DOI QR코드

DOI QR Code

Effects of Operational Parameters on the Removal of Acid Blue 25 Dye from Aqueous Solutions by Electrocoagulation

  • Balarak, Davoud (Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences) ;
  • Ganji, Fatemeh (Department of Environmental Health, Student Research Committee, Zahedan University of Medical Sciences) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Seung Mok (Department of Environmental Engineering, Catholic Kwandong University) ;
  • Shim, Moo Joon (Department of Environmental Engineering, Catholic Kwandong University)
  • Received : 2019.11.11
  • Accepted : 2019.11.21
  • Published : 2019.12.10

Abstract

Influence of several experimental parameters (e.g., initial dye concentration, pH, distance between electrodes, applied voltage, electrical conductivity, current density, and reaction time) on the performance of electrocoagulation (EC) process for the removal of acid blue 25 (AB25) was studied. A bipolar batch reactor was used to test the impact of the parameters. The removal efficiency (RE) of AB25 dye was promoted by increasing the contact time, voltage, electrical conductivity, and applied current density. In contrast, RE of AB25 decreased with higher level of AB25 and the longer distance between electrodes. The removal efficiency increased consistently until pH 7, but decreased above pH 7. The maximum efficiency of AB25 removal above 90% was obtained at a voltage of 60 V, reaction time of 90 min, distance between electrodes of 0.5 cm, initial concentration of 25 mg/L, conductivity of 3,000 μS/cm and pH of 7. These results imply that the high RE of AB25 dye from the aqueous solution can be achieved by EC process.

Keywords

References

  1. A. Assadi, A. Soudavari, and M. Jan, Comparison of electrocoagulation and chemical coagulation processes in removing reactive red 196 from aqueous solution, J. Hum. Environ. Health Promot., 1(3), 172-182 (2016). https://doi.org/10.29252/jhehp.1.3.172
  2. R. Sanghi and B. Bhattacharya, Review on decolonization of aqueous dye solutions by low cost adsorbents, Coloration Technol., 118, 256-269 (2002). https://doi.org/10.1111/j.1478-4408.2002.tb00109.x
  3. M. A. Zazouli, J. Y. Cherati, M. Ebrahimi, and Y. Mahdavi, Investigating the removal rate of Acid Blue 113 from aqueous solution by canola (Brassica napus), J. Mazandaran Univ. Med. Sci., 22, 70-78 (2013).
  4. B. Zohra, K. Aicha, S. Fatima, B. Nourredine, and D. Zoubir, Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide, Chem. Eng. J., 136, 295-305 (2008). https://doi.org/10.1016/j.cej.2007.03.086
  5. S. Kara, C. Aydiner, E. Demirbas, M. Kobya, and N. Dizge, Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash, Desalination, 212, 282-293 (2007). https://doi.org/10.1016/j.desal.2006.09.022
  6. A. Mahvi, M. Ghanbarian, S. Nasseri, and A. Khairi, Mineralization and discoloration of textile wastewater by $TiO_2$ nanoparticles, Desalination, 239(1), 309-316 (2009). https://doi.org/10.1016/j.desal.2008.04.002
  7. S. T. Yang, S. Chen, Y. Chang, A. Cao, and Y. Liu, Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci., 359, 24-29 (2011). https://doi.org/10.1016/j.jcis.2011.02.064
  8. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, and V. K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: Isotherm, kinetic and thermodynamic studies, Colloid Interface Sci. Commun., 7, 16-19 (2015). https://doi.org/10.1016/j.colcom.2015.11.004
  9. S. P. Moussavi and F. M. Mohammadian, Acid violet 17 dye decolonization by multi-walled carbon nanotubes from aqueous solution, J. Hum. Environ. Health Promot., 1(2), 110-117 (2016). https://doi.org/10.29252/jhehp.1.2.110
  10. D. Balarak, Y. Mahdavi, E. Bazrafshan, and A. H. Mahvi, Kinetic, isotherms and thermodynamic modeling for adsorption of Acid Blue 92 from aqueous solution by modified Azolla filicoloides, Fresenius Environ. Bull., 25(5), 1321-1330 (2016).
  11. D. Balarak, F. K. Mostafapour, and A. Joghataei, Adsorption of Acid Blue 225 dye by multi walled carbon nanotubes: Determination of equilibrium and kinetics parameters, Der Pharma Chemica, 8(8), 138-145 (2016).
  12. R. Kamaraj and S. Vasudevan, Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution, Chem. Eng. Res. Des., 93, 522-530 (2015). https://doi.org/10.1016/j.cherd.2014.03.021
  13. M. Y. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, EC science and applications, J. Hazard. Mater., 84, 29-41 (2001). https://doi.org/10.1016/S0304-3894(01)00176-5
  14. S. Barisci and O. Turkay, Optimization and modeling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation, Water Sci. Technol., 73, 1673-1679 (2016). https://doi.org/10.2166/wst.2015.649
  15. N. Daneshvar, A. R. Khataee, A. R. Amani Ghadim, and M. H. Rasoulifard, Decolonization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC), J. Hazard. Mater., 148(3), 566-572 (2007). https://doi.org/10.1016/j.jhazmat.2007.03.028
  16. J. B. Parsa, T. M. Panah, and F. N. Chianeh, Removal of ciprofloxacin from aqueous solution by continuous flow electro-coagulation process, Korean J. Chem. Eng., 33, 893-901 (2016). https://doi.org/10.1007/s11814-015-0196-6
  17. I. A. Sengil and M. Ozacar, The decolonization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater., 161(2-3), 1369-1376 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.100
  18. O. T. Can, M. Bayramoglu, and M. Kobya, Decolonization of reactive dye solutions by electro-coagulation using aluminum electrodes, Ind. Eng. Chem. Res., 42(14), 3391-3396 (2003). https://doi.org/10.1021/ie020951g
  19. O, Larue, E. Vorobiev, C. Vu, and B. Durand, Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions, Sep. Purif. Technol., 31(2), 177-192 (2003). https://doi.org/10.1016/S1383-5866(02)00182-X
  20. M. Taheri, M. R. A. Moghaddam, and A. Arami, Improvement of the Taguchi design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation, Environ. Prog. Sustain. Energy, 34, 1568-1575 (2015). https://doi.org/10.1002/ep.12145
  21. Y. A. Mohammad, R. Saurabh, K. Prashanth, V. Madhavi, S. Tejas, A, G. Jewel, K. Mehmet, and L. David, Treatment of orange II azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes, J. Hazard. Mater., 109, 165-171 (2004). https://doi.org/10.1016/j.jhazmat.2004.03.011
  22. J. B. Parsa, H. R. Vahidian, A. R. Soleymani, and M. Abbasi, Removal of Acid Brown 14 in aqueous media by electrocoagulation: Optimization parameters and minimizing of energy consumption, Desalination, 278(1-3), 295-302 (2011). https://doi.org/10.1016/j.desal.2011.05.040
  23. N. Daneshvar, H. Ashassi-Sorkhabi, and A. Tizpar, Decolorization of orange II by electrocoagulation method, Sep. Purif. Technol., 31(2), 153-162 (2003). https://doi.org/10.1016/S1383-5866(02)00178-8
  24. M. Kobya, M. Bayramoglu, and M. Eyvaz, Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections, J. Hazard. Mater., 148(1-2), 311-318 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.036
  25. B. K. Nandi and S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation, Arab. J. Chem., 10, S2961-S2968 (2017). https://doi.org/10.1016/j.arabjc.2013.11.032
  26. M. Saravanan, N. P. Sambhamurthy, and M. Sivarajan, Treatment of Acid Blue 113 solution using iron electroagulation, Clean (Weinh), 38, 565-571 (2010).
  27. N. M. A. Ghalwa, A. M. Saqer, and N. B. Farhat, Removal of reactive Red 24 dye by clean electrocoagulation process using iron and aluminum electrodes, J. Chem. Eng. Process Technol., 18, 195-204 (2016).
  28. V. Khatibikamal, A. Torabian, F. Janpoor, and G. Hoshyaripour, Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics, J. Hazard. Mater., 179(1), 276-280 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.089
  29. N. Daneshvar, A. Oladegaragoze, and N. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters, J. Hazard. Mater., 129(1), 116-122 (2006). https://doi.org/10.1016/j.jhazmat.2005.08.033
  30. D. Ghosh, C. R. Medhi, and M. K. Purkait, Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections, Chemosphere, 73(9), 1393-1400 (2008). https://doi.org/10.1016/j.chemosphere.2008.08.041
  31. E. S. Z. El-Ashtoukhy and N. K. Amin, Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation - A comparative study, J. Hazard. Mater., 179(1), 113-119 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.066
  32. S. Song, Z. He, J. Qiu, L. Xu, and J. Chen, Ozone assisted electrocoagulation for decolonization of CI Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters, Sep. Purif. Technol., 55(2), 238-245 (2007). https://doi.org/10.1016/j.seppur.2006.12.013
  33. N. Drouiche, S. Aoudj, M. Hecini, N. Ghaffour, H, Lounici, and N. Mameri, Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes characteristics of products, J. Hazard. Mater., 169, 65-69 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.073
  34. A. Kuleyin and E. B. Balcioglu, Investigation of the removal of crystal violet by electrocoagulation method, Fresenius Environ. Bull., 18(9), 1597-1602 (2009).
  35. M. S. Secula, B. Cagnon, T. F. de Oliveira, O, Chedeville, and H. Fauduet, Removal of acid dye from aqueous solutions by electrocoagulation/GAC adsorption coupling: Kinetics and electrical operating costs, J. Taiwan Inst. Chem. Eng., 43(5), 767-775 (2012). https://doi.org/10.1016/j.jtice.2012.03.003
  36. E. Bazrafshan, A. J. Jaafari, F. K. Mostafapour, and H. Biglari, Humic acid removal from aqueous environments by electrocoagulation process duad with adding hydrogen peroxide, Iran. J. Health Environ., 5(2), 211-224 (2012).
  37. M. Chafi, B. Gourich, A. H. Essadki, C. Vial, and A. Fabregat, Comparison of electrocoagulation using iron and aluminum electrodes with chemical coagulation for the removal of a highly soluble acid dye, Desalination, 281, 285-292 (2011). https://doi.org/10.1016/j.desal.2011.08.004

Cited by

  1. Adsorption of methyl orange: A review on adsorbent performance vol.4, 2019, https://doi.org/10.1016/j.crgsc.2021.100179