Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.5.423

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis  

Subramanian, Sathya (Department of Civil and Environmental Engineering, National University of Singapore)
Zhang, Yi (Department of Civil and Environmental Engineering, National University of Singapore)
Vinoth, Ganapathiraman (Department of Civil Engineering, The University of British Columbia)
Moon, Juhyuk (Department of Civil and Environmental Engineering, Seoul National University)
Ku, Taeseo (Department of Civil and Environmental Engineering, National University of Singapore)
Publication Information
Geomechanics and Engineering / v.21, no.5, 2020 , pp. 423-432 More about this Journal
Abstract
Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.
Keywords
lifecycle performance; stochastic deterioration modelling; structural reliability; reinforcement corrosion; residual strength;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Hainsworth, J.M. and Aylmore, L.A.G. (1983), "The use of computer assisted tomography to determine spatial distribution of soil water content", Soil Res., 21(4), 435-443. https://doi.org/10.1071/SR9830435.   DOI
2 Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.   DOI
3 Heeraman, D.A., Hopmans, J.W. and Clausnitzer, V. (1997), "Three dimensional imaging of plant roots in situ with X-ray computed tomography", Plant Soil, 189(2), 167-179. https://doi.org/10.1023/B:PLSO.0000009694.64377.6f.   DOI
4 Kawaragi, C., Yoneda, T., Sato, T. and Kaneko, K. (2009), "Microstructure of saturated bentonites characterized by X-ray CT observations", Eng. Geol., 106(1), 51-57. https://doi.org/10.1016/j.enggeo.2009.02.013.   DOI
5 Ketcham, R.A. and Carlson, W.D. (2001), "Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences", Comput. Geosci., 27(4), 381-400. https://doi.org/10.1016/S0098-3004(00)00116-3.   DOI
6 Khan, Q., Subramanian, S., Wong, D.Y.C. and Ku, T. (2019), "Bender elements in stiff cemented clay: Shear wave velocity correction by applying wavelength considerations", Can. Geotech. J., 56(7), 1034-1041. https://doi.org/10.1139/cgj-2018-0153.   DOI
7 Kozaki, T., Suzuki, S., Kozai, N., Sato, S. and Ohashi, H. (2001), "Observation of microstructures of compacted bentonite by microfocus X-ray computerized tomography (Micro-CT)", J. Nucl. Sci. Technol., 38(8), 697-699. https://doi.org/10.1080/18811248.2001.9715085.   DOI
8 Ladd, R.S. (1978), "Preparing test specimens using under compaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.   DOI
9 Lee, C., Nam, H., Lee, W., Choo, H. and Ku, T. (2019), "Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout", Geomech. Eng., 19(4), 343-352. https://doi.org/10.12989/gae.2019.19.4.343.   DOI
10 Leonards, G.A., Huang, A.B. and Ramos, J. (1991), "Piping and erosion tests at Conner Run Dam", J. Geotech. Eng., 117(1), 108-117. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(108).   DOI
11 Moon, S.W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2019), "Effect of fine particles on strength and stiffness of cement treated sand", Granul. Matter, 22, 9. https://doi.org/10.1007/s10035-019-0975-6.   DOI
12 Mooney, S.J. (2002), "Three dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography", Soil Use Manage., 18(2), 142-151. https://doi.org/10.1111/j.1475-2743.2002.tb00232.x.   DOI
13 Narsilio, G.A., Buzzi, O., Fityus, S., Yun, T.S. and Smith, D.W. (2009), "Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical and experimental approach", Comput. Geotech., 36(7), 1200-1206. https://doi.org/10.1016/j.compgeo.2009.05.006.   DOI
14 Nunan, N., Ritz, K., Rivers, M., Feeney, D.S. and Young, I.M. (2006), "Investigating microbial micro-habitat structure using X-ray computed tomography", Geoderma, 133(3), 398-407. https://doi.org/10.1016/j.geoderma.2005.08.004.   DOI
15 Schnaid, F., Prietto, P.D.M. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).   DOI
16 Sariosseiri, F. and Muhunthan, B. (2009), "Effect of cement treatment on geotechnical properties of some Washington State soils", Eng. Geol., 104(1), 119-125. https://doi.org/10.1016/j.enggeo.2008.09.003.   DOI
17 Sarkar, G. and Siddiqua, S. (2016), "Effect of fluid chemistry on the microstructure of light backfill: An X-ray CT investigation", Eng. Geol., 202, 153-162. https://doi.org/10.1016/j.enggeo.2016.01.012.   DOI
18 Saxena, S.K., Avramidis, A.S. and Reddy, K.R. (1988), "Dynamic moduli and damping ratios for cemented sands at low strains", Can. Geotech. J., 25(2), 353-368. https://doi.org/10.1139/t88-036.   DOI
19 Schwartz, F.W. and Zhang, H. (2003), Fundamentals of Groundwater, John Wiley & Sons. New York, U.S.A.
20 Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649.   DOI
21 Subramanian, S., Khan, Q. and Ku, T. (2019), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Construct. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.   DOI
22 Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA treated sand for ground improvement: Microstructure analysis and rapid strength development", J. Mater. Civ. Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523.   DOI
23 Carpenter, G. and Stephenson, R. (1986), "Permeability testing in the triaxial cell", Geotech. Test. J., 9(1), 3-9. https://doi.org/10.1520/GTJ10605J.   DOI
24 Yilmaz, Y., Eun, J. and Goren, A. (2018), "Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils", Geomech. Eng., 16(4), 375-384. https://doi.org/10.12989/gae.2018.16.4.375.   DOI
25 Young, I.M., Crawford, J.W. and Rappoldt, C. (2001), "New methods and models for characterising structural heterogeneity of soil", Soil Tillage Res., 61(1), 33-45. https://doi.org/10.1016/S0167-1987(01)00188-X.   DOI
26 Acar, Y.B. and El-Tahir, E.T.A. (1986), "Low strain dynamic properties of artificially cemented sand", J. Geotech. Eng., 112(11), 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001).   DOI
27 Ajorloo, A.M., Mroueh, H. and Lancelot, L. (2012), "Experimental investigation of cement treated sand behavior under triaxial test", Geotech. Geol. Eng., 30(1), 129-143. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001).   DOI
28 Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331. https://doi.org/10.1680/bcmpge.60531.010.   DOI
29 Cardoso, R. (2016), "Porosity and tortuosity influence on geophysical properties of an artificially cemented sand", Eng. Geol., 211, 198-207. https://doi.org/10.1016/j.enggeo.2016.07.009.   DOI
30 Cardoso, R. (2017), "Influence of water-cement ratio on the hydraulic behavior of an artificially cemented sand", Geotech. Geol. Eng., 35(4), 1513-1527. https://doi.org/10.1007/s10706-017-0190-3.   DOI
31 Chapuis, R.P. (2004), "Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio", Can. Geotech. J., 41(5), 787-795. https://doi.org/10.1139/t04-022.   DOI
32 Consoli, N.C., Cruz, R.C., Floss, M.F. and Festugato, L. (2009), "Parameters controlling tensile and compressive strength of artificially cemented sand", J. Geotech. Geoenviron. Eng., 136(5), 759-763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.   DOI
33 Chen, B., Sun, D. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://doi.org/10.12989/gae.2019.18.1.049.   DOI
34 Choi, S.G., Chu, J. and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.   DOI
35 Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S. (1981), "Cemented sands under static loading", J. Geotech. Geoenviron. Eng., 107(6), 799-817.
36 Consoli, N.C., Festugato, L., da Rocha, C.G. and Cruz, R.C. (2013), "Key parameters for strength control of rammed sand- cement mixtures: Influence of types of portland cement", Construct. Build. Mater., 49, 591-597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.   DOI
37 Consoli, N.C., Foppa, D., Festugato, L., and Heineck, K.S. (2007), "Key parameters for strength control of artificially cemented soils", J. Geotech. Geoenviron. Eng., 133(2), 197-205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).   DOI
38 Crestana, S., Mascarenhas, S. and Pozzi-Mucelli, R.S. (1985), "Static and dynamic three dimensional studies of water in soil using computed tomographic scanning", Soil Sci., 140(5), 326-332.   DOI
39 Cuccovillo, T. and Coop, M. (1997), "Yielding and pre-failure deformation of structured sands", Geotechnique, 47(3), 491-508. https://doi.org/10.1680/geot.1997.47.3.491.   DOI
40 Daniel, D.E. (1994), State-of-the-Art: Laboratory Hydraulic Conductivity Tests for Saturated Soils, in Hydraulic Conductivity and Waste Contaminant Transport in Soil, ASTM International.
41 Edil, T.B. and Erickson, A.E. (1985), Procedure and Equipment Factors affecting Permeability Testing of a Bentonite-Sand Liner Material, in Hydraulic Barriers in Soil and Rock, ASTM International.
42 DeJong, J.T., Fritzges, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).   DOI
43 DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.   DOI
44 Dunn, R.J. and Mitchell, J.K. (1984), "Fluid conductivity testing of fine-grained soils", J. Geotech. Eng., 110(11), 1648-1665. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1648).   DOI
45 Fernandez, A.L. and Santamarina, J.C. (2001), "Effect of cementation on the small-strain parameters of sands", Can. Geotech. J., 38(1), 191-199. https://doi.org/10.1139/t00-081.   DOI
46 Ferris, F.G., Stehmeier, L.G., Kantzas, A. and Mourits, F.M. (1996), "Bacteriogenic mineral plugging", J. Can. Petrol. Technol., 35(08). https://doi.org/10.2118/97-09-07.
47 Fox, P.J. (1996), "Analysis of hydraulic gradient effects for laboratory hydraulic conductivity testing", Geotech. Test. J., 19(2), 181-190. https://doi.org/10.1520/GTJ10340J.   DOI
48 Garboczi, E.J. and Bentz, D.P. (2001), "The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model", Cement Concrete Res., 31(10), 1501-1514. https://doi.org/10.1016/S0008-8846(01)00593-2.   DOI
49 Park, D., Kim, I., Kim, G. and Lee, J. (2019), "Effect of groundwater fluctuation on load carrying performance of shallow foundation", Geomech. Eng., 18(6), 575-584. https://doi.org/10.12989/gae.2019.18.6.575.   DOI
50 Olson, R.E. and Daniel, D.E. (1981), Measurement of the Hydraulic Conductivity of Fine-Grained Soils, in Permeability and Groundwater Contaminant Transport, ASTM International.
51 Peng, S., Marone, F. and Dultz, S. (2014), "Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone", J. Hydrol., 510, 403-411. https://doi.org/10.1016/j.jhydrol.2013.12.028.   DOI
52 Petrovic, A.M., Siebert, J.E. and Rieke, P.E. (1982), "Soil bulk density analysis in three dimensions by computed tomographic scanning", Soil Sci. Soc. Amer. J., 46(3), 445-450. https://doi.org/10.2136/sssaj1982.03615995004600030001x.   DOI
53 Pierret, A., Capowiez, Y., Belzunces, L. and Moran, C.J. (2002), "3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis", Geoderma, 106(3), 247-271. https://doi.org/10.1016/S0016-7061(01)00127-6.   DOI
54 Provis, J.L., Myers, R.J., White, C.E., Rose, V. and van Deventer, J.S.J. (2012), "X-ray microtomography shows pore structure and tortuosity in alkali-activated binders", Cement Concrete Res., 42(6), 855-864.   DOI
55 Rogasik, H., Onasch, I., Brunotte, J., Jegou, D. and Wendroth, O. (2003), "Assessment of soil structure using X-ray computed tomography", Geol. Soc. London Special Publ., 215(1), 151-165. https://doi.org/10.1144/GSL.SP.2003.215.01.14.   DOI
56 Rotta, G.V., Consoli, N.C., Prietto, P.D.M., Coop, M.R. and Graham, J. (2003), "Isotropic yielding in an artificially cemented soil cured under stress", Geotechnique, 53(5), 493-501. https://doi.org/10.1680/geot.2003.53.5.493.   DOI
57 Wei, X. and Ku, T. (2020), "New design chart for geotechnical ground improvement: Characterizing cement-stabilized sand", Acta Geotechnica, 15(4), 999-1011. https://doi.org/10.1007/s11440-019-00838-2.   DOI
58 Uchikawa, H. (1989), "Similarities and discrepancies of hardened cement paste, mortar and concrete from the standpoints of composition and structure", Proceeding of the Engineering Foundation Conference' Advances in Cement Manufacture and Use'at Trout Lodge, Potosi, Missouri, U.S.A.
59 Viggiani, G., Ando, E., Takano, D. and Santamarina, J.C. (2015), "Laboratory X-ray tomography: A valuable experimental tool for revealing processes in soils", Geotech. Test. J., 38(1), 61-70. https://doi.org/10.1520/GTJ20140060.
60 Wang, Y.H. and Leung, S.C. (2008), "A particulate-scale investigation of cemented sand behavior", Can. Geotech. J., 45(1), 29-44. https://doi.org/10.1139/T07-070.   DOI
61 Xiao, H., Lee, F.H. and Chin, K.G. (2014), "Yielding of cement-treated marine clay", Soils Found., 54(3), 488-501. https://doi.org/10.1016/j.sandf.2014.04.021.   DOI