• Title/Summary/Keyword: Conduction losses

Search Result 218, Processing Time 0.026 seconds

Simulation and Analysis of Losses of Switching Device for Single Grid-connected Full bridge inverter (단상 계통 연계형 풀브릿지 인버터의 스위치 손실 모의 및 분석)

  • Son, Myeongsu;Lim, Hyun Ji;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.101-102
    • /
    • 2017
  • This paper presents analysis of losses of switching device for full bridge inverter connected to grid. The losses are a dominant factor that judges efficiency of the system. The losses of switching device are divided to switching loss and conduction loss. They are can be estimated by analyzing periodic switching waveforms. The switching loss is generated at the point that turn-on and off. And the conduction loss is generated while the switch is on condition. The estimated losses of switch are compared to simulation result in this paper.

  • PDF

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

A Novel PFC AC/DC Converter for Reducing Conduction Losses (도통손실 저감을 위한 새로운 역률 보상 AC/DC 컨버터)

  • 강필순;김광태;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.273-278
    • /
    • 1999
  • This paper presents a novel Power Factor Corrected(PFC) single-stage AC/DC Half-Bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel power factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V] output voltage are presented.

  • PDF

A study on the efficiency characteristics for two transistor Forward DC-DC converter (Two transistor 포워드 DC-DC 컨버터의 효율 특성에 관한 연구)

  • Ahn, Tae-Young;Lee, Gwang-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for Two transistor forward (TTF) DC-DC converter In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the TTF converter that includes all the parasitic resistances of the circuit components. While the conduction losses are accurately accounted for the diode rectification, the core losses are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype TTF converter An excellent correlation between the experiments and theories are obtained for the input voltages of 390V, output voltage 12V and maximum power 480W.

Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems

  • Wang, Haitian;Tang, Guangfu;He, Zhiyuan;Cao, Junzheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.685-694
    • /
    • 2015
  • The power loss of the controllable switches in modular multilevel converter (MMC) HVDC transmission systems is an important factor, which can determine the design of the operating junction temperatures. Due to the dc current component, the approximate calculation tool provided by the manufacturer of the switches cannot be used for the losses of the switches in the MMC. Based on the enabled probabilities of each SM in an arm, the current analytical models of the switches can be determined. The average and RMS currents can be obtained from the corresponding current analytical model. Then, the conduction losses can be calculated, and the switching losses of the switches can be estimated according to the upper limit of the switching frequency. Finally, the thermal resistance model of the switches can be utilized, and the junction temperatures can be estimated. A comparison between the calculation and PSCAD simulation results shows that the proposed method is effective for estimating the junction temperatures of the switches in the MMC.

A NEW ZVS SEM1-RESONANT HIGH POWER FACTOR RECTIFIER WITH REDUCED CONDUCTION LOSSES (도통손실을 감소시킨 새로운 반 공진형 ZVS 고역률 정류기)

  • Lim, Kyoung-Hwan;Kim, Tai-Woong;Lee, Seung-Bak
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1993-1998
    • /
    • 1997
  • This paper presentes a novel single-phase unity power factor rectifer, which features Critical Conduction Mode and ZVS. The reduced conduction losses are achieved by the employment of a single converter instead of the typical configuration composed of a front end rectifier followed by a boost converter. Theoretical analysis, a design example and experimental results of a 300 converter with $127V_{rms}$ input voltage and 400 VDC output voltage are presented.

  • PDF

An Improved ZVS Partial Series Resonant DC/DC Converter with No Effective Duty Losses (유효 듀티 손실이 없는 향상된 영전압 부분 직렬 공진형 DC/DC 컨버터)

  • 이동윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.376-379
    • /
    • 2000
  • This paper presents an improved ZVS partial series resonant DC/DC converter (PSRC) with low conduction losses suitable for high power and high frequency applications. The proposed PSRC have advantages of zero-voltage-swiching (ZVS) of main switches for entire load ranges and low conduction losses of main switches by decreasing current stresses Also the reduction of the effective duty cycle is not occurred during the resonant period of the main circuit because the auxiliary circuit of the proposed converter is placed out of the main power path. An improved ZVS PSRC has a so much characteristics with respect to the reduction of current stress. The operation principles of the proposed converter are explained in detail and the various simulated and experimental results show the validity of the proposed converter.

  • PDF

A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses (도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구)

  • Lee, Yo-Seop;Lee, Won-Seok;Lee, Seong-Baek
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF

A novel PFC AC/DC converter for reducing conduction losses (도통손실 저감형 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Choi, Cheul;Park, Sung-Jun;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • This paper presents a novel power factor corrected(PFC) single-stage AC/DC half-bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel powder factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V]output voltage are presented.

  • PDF