• Title/Summary/Keyword: Concentrated Mass

Search Result 356, Processing Time 0.039 seconds

Stability Analysis of a Discontinuous Free Timoshenko Beam Subjected to a Controlled Follower Force (불연속 단면을 갖고 제어 종동력을 받는 자유 Timoshenko보의 안정성 해석)

  • 류봉조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.478-487
    • /
    • 1991
  • In this study, dynamic stability of discontinuous free Timoshenko beam, barring a concentrated mass, under constant follower force is considered. Governing differential equations are derived based on the extended Hamilton's principle and finite element method is applied for numerical analysis. Conclusions of the study are as follows : (1) Without force direction control, (i) the critical follower force at instability is increased with concentrated mass regardless of discontinuity. (ii) the minimum critical follower force is located in the vicinity of discontinuity position .xi.$_{d}$=0.75. (iii) at mass location .mu. .leq.0.5 the force at instability is decreased as magnitude of concentrated mass is increased but, at .mu. .geq. 0.5 the force is increased as the mass is increased. (2) With force direction control, (i) shear deformation parameter S contributes insignificantly to the force at instability when S>10$^{[-993]}$ (ii) maximum critical follower force can be obtained for the discontinuity location .xi.$_{d}$=0.25. (iii) the critical follower force is increased as magnitude of concentrated mass .alpha. is increased at mass location .mu. .geq.0.4, but is increased, .mu ..leq.0.4.4.

Vibration Analysis of Tapered Thick Plate with Concentrated Mass Subjected to In-plane Force on Elastic Foundation (탄성지반을 고려한 집중질량뜰 갖고 면내력이 작용하는 변단면 보강후판의 진동해석)

  • Lee, Yong-Soo;Kim, Il-Jung;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1033-1041
    • /
    • 2008
  • The purpose of this paper is to investigate natural frequencies of tapered thick plate with concentrated masses subjected to in-plane force on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Finite element analysis of rectangular plate is done by using rectangular finite element with 8-nodes. For analysis, plates is supported on pasternak foundation. The Winkler parameter is varied with 10, 102, the shear foundation parameter is 5. The taper ratio is applied as 0.0, 0.25, 0.5 and the ratio of the concentrated mass to plate mass as 0.25, 0.5 respectively. As results, we can see that when stiffener's sizes or foundation parameter are larger, the natural frequency increases, and when the concentrated mass or taper ratio or in-plane stress is larger, the natural frequency decreases.

Vibration Analysis of Cantilever Beams Having a Concentrated Tip Mass and a Crack (끝단 집중질량과 크랙을 가진 외팔보의 진동 해석)

  • Kim, Kyung-Ho;Eom, Seung-Man;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1360-1365
    • /
    • 2006
  • In this paper the vibration analysis of cantilever beams having a concentrated tip mass and an open crack are performed. The influences of a concentrated tip mass, the crack depth, and the crack position on the natural frequencies of the cracked cantilever beam are investigated by a numerical method. The cracked cantilever beam is modeled based on the Euler-Bernoulli beam theory. The flexibility due to crack is calculated using a fracture mechanics theory. The crack is assumed to be opened during the vibrations. The results obtained by the present method were compared with experimental results to verify the theory. As inspected, as the crack depth and the concentrated tip mass increase, the natural frequencies of the beam decrease. In general, the natural frequencies of the cantilever beam are more sensitive to the depth of the crack than the position of the crack.

  • PDF

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Vibration Analysis of Rectangular Thick Hate with Concentrated Mass (집중질량을 갖는 후판의 진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. the thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analyize plat which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as Kw1 and Kw2 respectively. The value of Kw1 and Kw2 can be changed as 0, 10, $10^2,\;10^3$ and the value of SFP(shear foundation parameter) also be changed 0, 5, 10, 15 respectively. Finally, In this paper, vibration of retangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated

  • PDF

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복 운동을 하는 집중 질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.868-874
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the size and the location of the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion (크랙과 집중질량을 갖는 회전 외팔보의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.354-359
    • /
    • 2008
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

  • PDF

Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

Stability Analysis of Rectangular Plate with Concentrated Mass (집중질량을 갖는 장방형판의 안정해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.805-809
    • /
    • 2004
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. The vibration of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analysis plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as WFP1 and WFP2 respectively. The value of WFP1 and WFP2 can be changed as 10, 10$^3$ and the value of SFP(shear foundation parameter) also be changed 5, 15 respectively.

  • PDF

Dynamic Stability Analysis of Axially Oscillating Cantilever Beams with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.718-723
    • /
    • 2000
  • Dynamic stability of an axially oscillating cantilever beam with a concentrated mass is investigated in this paper. The equations of motion are derived and the derived equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Under certain conditions of the frequency and the amplitude of oscillating motion, parametric instabilities may occur. The multiple scale perturbation method is employed to obtain the stability analysis results. It is found that the system stability varies with the magnitude or the location of the concentrated mass. Instability increases as the concentrated mass approaches to the free-end or its magnitude increases.

  • PDF