• Title/Summary/Keyword: Computed tomography scanner

Search Result 100, Processing Time 0.025 seconds

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

Effect of Different CT Scanner Types and Beam Collimations on Measurements of Three-Dimensional Volume and Hounsfield Units of Artificial Calculus Phantom (인공결석모형물의 부피와 하운스필드값 측정에 대한 전산화단층촬영기기의 타입과 빔 콜리메이션의 영향)

  • Wang, Jihwan;Lee, Heechun
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.495-501
    • /
    • 2014
  • The objective of this study was to evaluate the differences and reproducibility of Hounsfield unit (HU) value and volume measurements on different computed tomography (CT) scanner types and different collimations by using a gelatin phantom. The phantom consisting of five synthetic simulated calculus spanning diameters from 3.0 mm to 12.0 mm with 100 HU was scanned using a two-channel multi-detector row CT (MDCT) scanner, a four-channel MDCT scanner, and two 64-channel MDCT scanners. For all different scanner types, the thinnest possible collimation and the second thinnest collimation was used. The HU values and volumes of the synthetic simulated calculus were independently measured three times with minimum intervals of 2 weeks and by three experienced veterinary radiologists. ANOVA and Scheff$\acute{e}$ test for the multiple comparison were performed for statistical comparison of the HU values and volumes of the synthetic simulated calculus according to different CT scanner types and different collimations. The reproducibility of the HU value and volume measurements was determined by calculating Cohen's k. The reproducibility of HU value and volume measurements was very good. HU value varied between different CT scanner types, among different beam collimations. However, there was not statistically significant difference. The percent error (PE) decreased as the collimation thickness decreased, but the decrease was statistically insignificant. In addition, no statistically significant difference in the PEs of the different CT scanner types was found. It can be concluded that the CT scanner type insignificantly affects HU value and the volumetric measurement, but that a thinner collimation tends to be more useful for accurate volumetric measurement.

Assessment of the accuracy of laser-scanned models and 3-dimensional rendered cone-beam computed tomographic images compared to digital caliper measurements on plaster casts

  • Yousefi, Faezeh;Shokri, Abbas;Zahedi, Foozie;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.429-438
    • /
    • 2021
  • Purpose: This study investigated the accuracy of laser-scanned models and 3-dimensional(3D) rendered cone-beam computed tomography (CBCT) compared to the gold standard (plaster casts) for linear measurements on dental arches. Materials and Methods: CBCT scans and plaster models from 30 patients were retrieved. Plaster models were scanned by an Emerald laser scanner (Planmeca, Helsinki, Finland). Sixteen different measurements, encompassing the mesiodistal width of teeth and both arches' length and width, were calculated using various landmarks. Linear measurements were made on laser-scanned models using Autodesk Meshmixer software v. 3.0 (Autodesk, Mill Valley, CA, USA), on 3D-rendered CBCT models using OnDemand 3D v. 1.0 (Cybermed, Seoul, Korea) and on plaster casts by a digital caliper. Descriptive statistics, the paired t-test, and intra- and inter-class correlation coefficients were used to analyze the data. Results: There were statistically significant differences between some measurements on plaster casts and laser-scanned or 3D-rendered CBCT models (P<0.05). Molar mesiodistal width and mandibular anterior arch width deviated significantly different from the gold standard in both methods. The largest mean differences of laser-scanned and 3D-rendered CBCT models compared to the gold standard were 0.12±0.23 mm and 0.42±0.53 mm, respectively. Most of the mean differences were not clinically significant. The intra- and inter-class correlation results were acceptable for all measurements(>0.830) and between observers(>0.801). Conclusion: The 3D-rendered CBCT images and laser-scanned models were useful and accurate alternatives to conventional plaster models. They could be used for clinical purposes in orthodontics and prostheses.

Validation of a low-cost portable 3-dimensional face scanner

  • Liu, Catherine;Artopoulos, Andreas
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • Purpose: The goal of this study was to assess the accuracy and reliability of a low-cost portable scanner (Scanify) for imaging facial casts compared to a previously validated portable digital stereophotogrammetry device (Vectra H1). This in vitro study was performed using 2 facial casts obtained by recording impressions of the authors, at King's College London Academic Centre of Reconstructive Science. Materials and Methods: The casts were marked with anthropometric landmarks, then digitised using Scanify and Vectra H1. Computed tomography (CT) scans of the same casts were performed to verify the validation of Vectra H1. The 3-dimensional (3D) images acquired with each device were compared using linear measurements and 3D surface analysis software. Results: Overall, 91% of the linear Scanify measurements were within 1 mm of the corresponding reference values. The mean overall surface difference between the Scanify and Vectra images was <0.3mm. Significant differences were detected in depth measurements. Merging multiple Scanify images produced significantly greater registration error. Conclusion: Scanify is a very low-cost device that could have clinical applications for facial imaging if imaging errors could be corrected by a future software update or hardware revision.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

A Study on the Radiation Dose in Computed Tomographic Examinations (전산화단층촬영 검사의 방사선 선량에 관한 연구)

  • Lim, Chung-Hwang;Cho, Jung-Keun;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2007
  • The purpose of this study is investigation of radiation dose in CT scan. Data were collected from various references and organizations. Doses measured by CT scanners of each medical organization were analyzed and they were calculated through the examination protocol. The results are as follows : 1. $CTDI_W$ value per 100mAs measured by Head Phantom was the highest in <4-slice MDCT scanner> of 24.20 mGy. $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 2. $CTDI_W$ value per 100 mAs measured using body phantom was the highest in <4-slice MDCT scanner> of 13.58 mGy and the $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 3. When contrast medium was not used, the highest scanner was <16 slice MDCT> of $818.83\;mGy{\codt}cm$ in exposure dose in brain scan(p < 0.05). When the contrast medium was used, the highest scanner was <4 slice MDCT> and its average was $1,460.77\;mGy{\cdot}cm$(p < 0.1). 4. When the contrast medium was not used, the highest scanner was <16-slice MDCT> of $521.63\;mGy{\cdot}cm$ on average in terms of the exposure dose in chest inspection(p<0.05). when the contrast medium was used, the highest scanner was found in 8 slice MDCT scanner and its average was $1,174.70\;mGy{\cdot}cm$. There was no statistically significant difference among scanners. 5. When the contrast medium was not used, the highest scanner was <16-slice MDCT> and its average was $856.27\;mGy{\cdot}cm$ in exposure dose on the abdomen-pelvis(p<0.05). when the contrast medium was used, the highest scanner was <16-slice MDCT> and its average was $1,720.64\;mGy{\cdot}cm$ on average (p < 0.05). 6. When the contrast medium was not used, the highest scanner was <8-slice MDCT> and its average was $612.07\;mGy{\cdot}cm$ in exposure dose in liver inspection(p < 0.05). when the contrast medium was used, the highest scanner was <8-slice MDCT scanner> and its average was $2,197.93\;mGy{\cdot}cm$ in exposure dose(p < 0.1). seventy six point two percent of medical facilities were in risk of radiation exposure while the number of phase was three to four times in their dose inspection of contrast medium.

  • PDF

Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1610-1615
    • /
    • 2019
  • Positron emission tomography (PET)/magnetic resonance (MR) scanning has the advantage of less additional exposure to radiation than does PET/computed tomography (CT). In particular, MR based attenuation correction (MR AC) can greatly affect the image quality of PET and is frequently obtained using various MR sequences. Thus, the purpose of the current study was to quantitatively compare the image quality between MR non-AC (MR NAC) and MR AC in PET images with three MR sequences. Percent image uniformity (PIU), percent contrast recovery (PCR), and percent background variability (PBV) were estimated to evaluate the quality of PET images with MR AC. Based on the results of PIU, 15.2% increase in the average quality was observed for PET images with MR AC than for PET images with MR NAC. In addition, 28.6% and 71.1% improvement in the average results of PCR and PBV respectively, was observed for PET images with MR AC compared with that with MR NAC. Moreover, no significant difference was observed among the average values using three MR sequences. In conclusion, the current study demonstrated that PET with MR AC improved the image quality and can be help diagnosis in all MR sequence cases.

A simplified CAD/CAM extraoral surgical guide for therapeutic injections

  • Cameron, Andrew;Custodio, Antonio Luis Neto;Bakr, Mahmoud;Reher, Peter
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • Therapeutic injections into the craniofacial region can be a complex procedure because of the nature of its anatomical structure. This technical note demonstrates a process for creating an extra-oral template to inject therapeutic substances into the temporomandibular joint and the lateral pterygoid muscle. The described process involves merging cone-beam computed tomography data and extra-oral facial scans obtained using a mobile device to establish a correlated data set for virtual planning. Virtual injection points were simulated using existing dental implant planning software to assist clinicians in precisely targeting specific anatomical structures. A template was designed and then 3D printed. The printed template showed adequate surface fit. This innovative process demonstrates a potential new clinical technique. However, further validation and in vivo trials are necessary to assess its full potential.

Immediate loading of mandibular single implant by using surgical guide and modeless digital prosthesis: a case report (수술용 가이드와 modeless 디지털 보철물을 이용한 하악 구치부 단일 임플란트 즉시 하중 증례)

  • Lim, Hyun-jeong;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2017
  • In this case report, immediate loading of an implant-supported single-tooth prosthesis through complete digital workflow. A patient presented for restoration of missing a single tooth in the mandibular first molar. The digital impression was made with intraoral scanner and implant was placed using surgical guide pre-fabricated with pre-operative computed tomography (CT) and scan data. After 1 week later, prefabricated customized abutment and provisional restoration were connected for immediate loading. After 8 weeks later, abutment level impression was taken by intraoral scanner. At 3 months later from implant installation, monolithic zirconia crown were fabricated. This clinical report presents satisfying result in accuracy and patient satisfaction. A completely modeless digital procedure met expectations regarding precision, esthetics, and functionality.