Effect of Different CT Scanner Types and Beam Collimations on Measurements of Three-Dimensional Volume and Hounsfield Units of Artificial Calculus Phantom

인공결석모형물의 부피와 하운스필드값 측정에 대한 전산화단층촬영기기의 타입과 빔 콜리메이션의 영향

  • Wang, Jihwan (Research Institute of Life Sciences, Gyeongsang National University) ;
  • Lee, Heechun (Research Institute of Life Sciences, Gyeongsang National University)
  • 왕지환 (경상대학교 생명과학연구원) ;
  • 이희천 (경상대학교 생명과학연구원)
  • Accepted : 2014.12.08
  • Published : 2014.12.31

Abstract

The objective of this study was to evaluate the differences and reproducibility of Hounsfield unit (HU) value and volume measurements on different computed tomography (CT) scanner types and different collimations by using a gelatin phantom. The phantom consisting of five synthetic simulated calculus spanning diameters from 3.0 mm to 12.0 mm with 100 HU was scanned using a two-channel multi-detector row CT (MDCT) scanner, a four-channel MDCT scanner, and two 64-channel MDCT scanners. For all different scanner types, the thinnest possible collimation and the second thinnest collimation was used. The HU values and volumes of the synthetic simulated calculus were independently measured three times with minimum intervals of 2 weeks and by three experienced veterinary radiologists. ANOVA and Scheff$\acute{e}$ test for the multiple comparison were performed for statistical comparison of the HU values and volumes of the synthetic simulated calculus according to different CT scanner types and different collimations. The reproducibility of the HU value and volume measurements was determined by calculating Cohen's k. The reproducibility of HU value and volume measurements was very good. HU value varied between different CT scanner types, among different beam collimations. However, there was not statistically significant difference. The percent error (PE) decreased as the collimation thickness decreased, but the decrease was statistically insignificant. In addition, no statistically significant difference in the PEs of the different CT scanner types was found. It can be concluded that the CT scanner type insignificantly affects HU value and the volumetric measurement, but that a thinner collimation tends to be more useful for accurate volumetric measurement.

본 연구는 다양한 전산화단층촬영기기와 촬영 프로토콜의 차이에 따른 모형물의 부피와 Hounsfield unit (HU) 수치의 차이를 평가하고 이 후 전산화단층촬영술을 이용하여 결석의 부피와 HU 수치를 포함한 다양한 인자들을 평가하고 이 중 체외충격파쇄석술에 의한 결석의 분쇄를 예측할 수 있는 인자를 찾고자 하였다. 다양한 직경의 100 HU 인공종양 5개를 (직경 3.0-12.0 mm) 이용하여 모형물을 만들었으며, 이 모형물의 부피와 HU 수치를 Siemens사의 2채널, GE사의 4채널과 64채널, 그리고 Philips사의 64채널 전산화단층촬영기기를 사용하여 평가하였다. 또한 각각의 전산화단층촬영기기에서 동일한 조건으로 collimation만 thin collimation과 thick collimation으로 변화를 주어 모형물을 촬영한 후 모형물의 부피와 HU 수치를 평가하였다. 평가자간 (inter-observer) 재현성을 평가하기 위해 3명의 수의영상의학 전공의가 연구에 참여하였으며 이중 한 명의 수의사가 평가자내 (intra-observer) 재현성을 평가하기 위해 모형물의 부피와 HU 수치를 2주 간격으로 총 3번 측정하였다. 부피의 평가자간 재현성과 평가자내 재현성은 k=0.9994, k=0.9969로 아주 우수하였으며, HU 수치의 평가자간 재현성과 평가자내 재현성 역시 k=0.9984, k=0.9655로 아주 우수하였다. 다양한 전산화단층촬영기기와 collimation 차이에 따른 부피와 HU 수치의 차이는 모두 통계학적으로 유의적인 차이를 나타내지 않았다. 그러나 부피의 경우 collimation이 얇을수록 부피의 정확도가 증가하는 경향을 보였다. 본 연구 결과를 토대로 향후 진행될 결석의 부피 및 HU 수치의 평가 시 전산화단층촬영기기의 차이에 따른 영향을 받지 않으리라 판단되어 Siemens사의 2채널 전산화단층촬영기기만을 사용하였으며, 비록 통계학적으로 유의적인 차이는 없었지만 부피의 정확도를 더 높이기 위하여 얇은 collimation을 사용하였다.

Keywords

References

  1. Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 2009; 103: 524-528. https://doi.org/10.1111/j.1464-410X.2008.08069.x
  2. Bezerra AS, D'lppolito G, Faintuch S, Szejnfeld J, Ahmed M. Determinations of splenomegaly by CT: is there a place for a single measurement? Am J Roentgenol 2005; 184: 1510-1513. https://doi.org/10.2214/ajr.184.5.01841510
  3. Bielak LF, Kaufmann RB, Moll PP, McCollough CH, Schwartz RS, Sheedy II PF. Small lesions in the heart identified at electron beam CT: calcification or noise? Radiology 1994; 192: 631-636. https://doi.org/10.1148/radiology.192.3.8058926
  4. Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 2007; 242: 109-119. https://doi.org/10.1148/radiol.2421052066
  5. Bolte H, Riedel C, Jahnke T, Inan N, Freitag S, Kohl G, Heller M, Biederer J. Reproducibility of computer-aided volumetry of artificial small pulmonary nodules in ex vivo porcine lungs. Invest Radiol 2006; 41: 28-35. https://doi.org/10.1097/01.rli.0000191366.05586.4d
  6. Bolte H, Riedel C, Muller-Hulsbeck S, Freitag-Wolf S, Kohl G, Drews T, Heller M, Biederer J. Precision of computeraided volumetry of artificial small solid pulmonary nodules in ex vivo porcine lungs. Br J Radiol 2007; 80: 414-421. https://doi.org/10.1259/bjr/23933268
  7. Bosniak MA. The current radiological approach to renal cysts. Radiology 1986; 158: 1-10. https://doi.org/10.1148/radiology.158.1.3510019
  8. Breiman RS, Beck JW, Korobkin M, Glenny R, Akwari OE, Heaston DK, Moore AV, Ram PC. Volume determinations using computed tomography. Am J Roentgenol 1982; 138: 329-333. https://doi.org/10.2214/ajr.138.2.329
  9. Buthiau D, Antoine EC, Nizri D, Stefani E, Lucien P, Cohen- Aloro G, Gozy M, Guinet F, Chiche B, Weil M, Khayat D. The clinical measurement of volumes using helical CT. Surg Radiol Anat 1996; 18: 227 - 231. https://doi.org/10.1007/BF02346131
  10. Cann CE. Low-dose scanning for quantitative spinal mineral analysis. Radiology 1981; 140: 813-815. https://doi.org/10.1148/radiology.140.3.7280252
  11. Das M, Muhlenbruch G, Katoh M, Bakai A, Salganicoff M, Stanzel S, Mahnken AH, Gunther RW, Wildberger JE. Automated volumetry of solid pulmonary nodules in a phantom: accuracy across different CT scanner technologies. Invest Radiol 2007; 42: 297-302. https://doi.org/10.1097/01.rli.0000258683.20123.c4
  12. Duckmanton NA, Austin BW, Lechner SK, Klineberg IJ. Imaging for predictable maxillary implants. Int J Prosthodont 1994; 7: 77-80.
  13. Fritschy P, Robotti G, Schneekloth G, Vock P. Measurement of liver volume by ultrasound and computed tomography. J Clin Ultrasound 1983; 11: 299-303. https://doi.org/10.1002/jcu.1870110602
  14. Groell R, Rienmuller R, Schaffler GJ, Portugaller HR, Grainf E, Willfurth P. CT number variations due to different image acquisition and reconstruction parameters: a thorax phantom study. Comput Med Imaging Graph 2000; 24: 53-58. https://doi.org/10.1016/S0895-6111(99)00043-9
  15. Hamano K, Iwasaki N, Kawashima K, Takita H. Volumetric quantification of brain volume in children using sequential CT scans. Neuroradiology 1990; 32: 300-303. https://doi.org/10.1007/BF00593049
  16. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J. Reference values for trabecular and cortical vertebral bone density in single and dual- energy quantitative computed tomography. Eur J Radiol 1989; 9: 75-80.
  17. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990; 176: 181-183. https://doi.org/10.1148/radiology.176.1.2353088
  18. Kemerink GJ, Lamers RJ, Thelissen GR, van Engelshoven JM. Scanner conformity in CT densitometry of the lungs. Radiology 1995; 197: 749-752. https://doi.org/10.1148/radiology.197.3.7480750
  19. Ko JP, Marcus R, Bomsztyk E, Babb JS, Stefanescu C, Kaur M, Naidich DP, Rusinek H. Effect of blood vessels on measurement of nodule volume in a chest phantom. Radiology 2006; 239: 79-85. https://doi.org/10.1148/radiol.2391041453
  20. Korobkin M, Brodeur FJ, Yutzy GG, Francis IR, Quint LE, Dunnick NR, Kazerooni EA. Differentiation of adrenal adenomas from nonadenomas using CT attenuation values. Am J Roentgenol 1996; 166: 531-536. https://doi.org/10.2214/ajr.166.3.8623622
  21. Larici AR, Storto ML, Torge M, Mereu M, Molinari F, Maggi F, Bonomo L. Automated volumetry of pulmonary nodules on multidetector CT: influence of slice thickness, reconstruction algorithm and tube current. Preliminary results. Radiol Med 2008; 113: 29-42. https://doi.org/10.1007/s11547-008-0231-3
  22. Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. Am J Roentgenol 1982; 139: 443-447. https://doi.org/10.2214/ajr.139.3.443
  23. Marten K, Engelke C. Computer-aided detection and automated CT volumetry of pulmonary nodules. Eur Radiol 2007; 17: 888-901. https://doi.org/10.1007/s00330-006-0410-3
  24. McCollough CH, Kaufmann RB, Cameron BM, Katz DJ, Sheedy II PF, Peyser PA. Electron-beam CT: use of a calibration phantom to reduce variability in calcium quantitation. Radiology 1995; 196: 159-165. https://doi.org/10.1148/radiology.196.1.7784560
  25. McCullough EC, Morin RL. CT-number variability in thoracic geometry. Am J Roentgenol 1983; 141: 135-140. https://doi.org/10.2214/ajr.141.1.135
  26. Merritt RB, Chenery SG. Quantitative CT measurements: the effect of scatter acceptance and filter characteristics on the EMI 7070. Phys Med Biol 1986; 31: 55-63. https://doi.org/10.1088/0031-9155/31/1/005
  27. Ohara T, Hirai T, Muro S, Haruna A, Terada K, Kinose D, Marumo S, Ogawa E, Hoshino Y, Niimi A, Chin K, Mishima M. Relationship between pulmonary emphysema and osteoporosis assessed by CT in patients with COPD. Chest 2008; 134: 1244-1249. https://doi.org/10.1378/chest.07-3054
  28. Papadakis AE, Karantanas AH, Papadokostakis G, Damilakis J. Assessment of the morpho-densitometric parameters of the lumbar pedicles in osteoporotic and control women undergoing routine abdominal MDCT examinations. J Bone Miner Metab 2011; 29: 352-358. https://doi.org/10.1007/s00774-010-0227-7
  29. Pareek G, Armenakas NA, Fracchia JA. Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol 2003; 169: 1679-1681. https://doi.org/10.1097/01.ju.0000055608.92069.3a
  30. Prabhakar R, Ganesh T, Rath GK, Julka PK, Sridhar PS, Joshi RC, Thulkar S. Impact of different CT slice thickness on clinical target volume for 3D conformal radiation therapy. Med Dosim 2009; 34: 36-41. https://doi.org/10.1016/j.meddos.2007.09.002
  31. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK, Silvestri GA. Pulmonary nodule volume: effects of reconstruction parameters on automated measurements - a phantom study. Radiology 2008; 247: 400-408. https://doi.org/10.1148/radiol.2472070868
  32. Sande EP, Martinsen AC, Hole EO, Olerud HM. Interphantom and interscanner variations for Hounsfield unitsestablishment of reference values for HU in a commercial QA phantom. Phys Med Biol 2010; 55: 5123-5135. https://doi.org/10.1088/0031-9155/55/17/015
  33. Taguchi A, Tanimoto K, Ogawa M, Sunayashiki T, Wada T. Effect of size of region of interest on precision of bone mineral measurements of the mandible by quantitative computed tomography. Dentomaxillofac Radiol 1991; 20: 25-29. https://doi.org/10.1259/dmfr.20.1.1884848
  34. Van Hoe L, Haven F, Bellon E, Baert AL, Bosmans H, Feron M, Suetens P, Marchal G. Factors influencing the accuracy of volume measurements in spiral CT: a phantom study. J Comput Assist Tomogr 1997; 21: 332-338. https://doi.org/10.1097/00004728-199703000-00034
  35. Wang S, Ruan Z, Zhang J, Jin W. The value of pulmonary contusion volume measurement with three-dimensional computed tomography in predicting acute respiratory distress syndrome development. Ann Thorac Surg 2011; 92: 1977-1983. https://doi.org/10.1016/j.athoracsur.2011.05.020
  36. Way TW, Chan HP, Goodsitt MM, Sahiner B, Hadjiiski LM, Zhou C, Chughtai A. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study. Phys Med Biol 2008; 53: 1295-1312. https://doi.org/10.1088/0031-9155/53/5/009
  37. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, Diederich S. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 2004; 14: 86-92. https://doi.org/10.1007/s00330-003-2132-0
  38. Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B, Henschke CI. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 2000; 217: 251-256. https://doi.org/10.1148/radiology.217.1.r00oc33251
  39. Zerhouni EA, Spivey JF, Morgan RH, Leo FP, Stitik FP, Siegelman SS. Factors influencing quantitative CT measurements of solitary pulmonary nodules. J Comput Assist Tomogr 1982; 6: 1075-1087. https://doi.org/10.1097/00004728-198212000-00005
  40. Zimmerman RD, Maldjian JA, Brun NC, Horvath B, Skolnick BE. Radiologic estimation of hematoma volume in intracerebral hemorrhage trial by CT scan. Am J Neuroradiol 2006; 27: 666-670.