DOI QR코드

DOI QR Code

Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences

  • Park, Chan Rok (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Lee, Youngjin (Department of Radiological Science, Gachon University)
  • Received : 2019.02.13
  • Accepted : 2019.04.08
  • Published : 2019.09.25

Abstract

Positron emission tomography (PET)/magnetic resonance (MR) scanning has the advantage of less additional exposure to radiation than does PET/computed tomography (CT). In particular, MR based attenuation correction (MR AC) can greatly affect the image quality of PET and is frequently obtained using various MR sequences. Thus, the purpose of the current study was to quantitatively compare the image quality between MR non-AC (MR NAC) and MR AC in PET images with three MR sequences. Percent image uniformity (PIU), percent contrast recovery (PCR), and percent background variability (PBV) were estimated to evaluate the quality of PET images with MR AC. Based on the results of PIU, 15.2% increase in the average quality was observed for PET images with MR AC than for PET images with MR NAC. In addition, 28.6% and 71.1% improvement in the average results of PCR and PBV respectively, was observed for PET images with MR AC compared with that with MR NAC. Moreover, no significant difference was observed among the average values using three MR sequences. In conclusion, the current study demonstrated that PET with MR AC improved the image quality and can be help diagnosis in all MR sequence cases.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. D.W. Townsend, Multimodality imaging of structure and function, Phys. Med. Biol. 53 (2008) R1-R39. https://doi.org/10.1088/0031-9155/53/4/R01
  2. C. Bai, P.E. Kinahan, D. Brasse, C. Comtat, D.W. Townsend, C.C. Melizer, V. Vilemagne, M. Charron, M. Defrise, An Analytic Study of the effects of attenuation on tumor detection in whole-body PET oncology imaging, J. Nucl. Med. 44 (2003) 1855-1861.
  3. K.R. Zasadny, P.V. Kison, L.E. Quint, R.L. Wahl, Untreated lung cancer: quantification of systematic distortion of tumor size and shape on non-attenuation corrected 2-[fluorine-18]fluoro-2-deoxy-d-glucose PET scans, Radiology 201 (1996) 873-876. https://doi.org/10.1148/radiology.201.3.8939245
  4. P. Ziai, M.R. Hayeri, A. Salei, A. Salavati, S. Houshmand, A. Alavi, Role of optimal quantification of FDG PET imaging in the clinical practice of radiology, Radiographics 36 (2016) 481-496. https://doi.org/10.1148/rg.2016150102
  5. C. Buchbender, V. Hartung-Knemeyer, M. Forsting, G. Antoch, T.A. Heusner, Positron emission tomography (PET) attenuation correction artefacts in PET/ CT and PET/MRI, Br. J. Radiol. 86 (2013). https://doi.org/10.1259/bjr.20120570.
  6. J.P.J. Carney, D.W. Townsend, V. Rappoport, B. Bendriem, Method for transforming CT images for attenuation correction in PET/CT imaging, Med. Phys. 33 (2006) 976-983. https://doi.org/10.1118/1.2174132
  7. E. Kamel, T.F. Hany, C. Burger, V. Treyer, A.H.R. Lonn, G.K.V. Schulthess, A. Buck, CT vs $^{68}Ge$ attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current, Eur. J. Nucl. Med. 29 (2002) 346-350. https://doi.org/10.1007/s00259-001-0698-9
  8. P.E. Kinahan, D.W. Townsend, T. Beyer, Attenuation correction for a combined 3D PET/CT scanner, Med. Phys. 25 (1998) 2046-2053. https://doi.org/10.1118/1.598392
  9. G. Brix, U. Lechel, G. Glatting, S.I. Ziegler, W. Münzing, S.P. Muller, T. Beyer, Radiation exposure of patients undergoing whole-body dual-modality $^{18}F-FDG$ PET/CT examinations, J. Nucl. Med. 46 (2005) 608-613.
  10. G. Ronald, Z. Nan, C. James, S. Matthias, L. Ralf, V. Markus, S. Gunter, R. Wolfgang, F. Hubertus, APD-based PET detector for simultaneous PET/MR imaging, Nucl. Instrum. Methods Phys. Res. 569 (2006) 301-305. https://doi.org/10.1016/j.nima.2006.08.121
  11. H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z.A. Fayad, Design and performance evaluation of a whole-body ingenuity TF PET-MRI system, Phys. Med. Biol. 56 (2011) 3091-3106. https://doi.org/10.1088/0031-9155/56/10/013
  12. Z. Hu, N. Ojha, S. Renisch, V. Schulz, I. Torres, A. Buhl, D. Pal, G. Muswick, J. Penatzer, T. Guo, P. Bonert, C. Tung, J. Kaste, M. Morich, T. Havens, P. Maniawski, W. Schafer, R.W. Gunther, G.A. Krombach, L. Shao, MR-based attenuation correction for a whole-body sequential PET/MR system, in: IEEE Nuclear Science Symp. Conf. Record, NSS/MIC, 2009. http://doi.org/10.1109/NSSMIC.2009.5401802.
  13. G. Delos, S. Furst, B. Jakoby, R. Ladebeck, C. Ganter, S.G. Nekolla, M. Schwaiger, S.I. Ziegler, Performance measurements of the siemens mMR integrated whole-body PET/MR scanner, J. Nucl. Med. 52 (2011) 1-9. https://doi.org/10.2967/jnumed.110.076018
  14. A.M. Grant, M.M. Khalighi, S.H. Maramraju, G. Delso, C.S. Levin, NEMA NU 2-2012 performance studies for the SIPM-based ToF-PET component of the ge signa PET/MR system, Med. Phys. 43 (2016) 2334-2343. https://doi.org/10.1118/1.4945416
  15. V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Bornert, M. Perkuhn, T. Niendorf, W.M. Schafer, H. Brockmann, T. Krohn, A. Buhl, R.W. Gunther, F.M. Mottaghy, G.A. Krombach, Automatic, three-segment, MRbased attenuation correction for whole-body PET/MR data, Eur. J. Nucl. Med. Mol. Imag. 38 (2011) 138-152. https://doi.org/10.1007/s00259-010-1603-1
  16. A. Martinez-Moller, M. Souvatzoglou, G. Delso, R.A. Bundschuh, C. Chefd'hotel, S.I. Ziegler, N. Navab, M. Schwaiger, S.G. Nekolla, Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data, J. Nucl. Med. 50 (2009) 520-526. https://doi.org/10.2967/jnumed.108.054726
  17. M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M. Brady, B. Scholkopf, B.J. Pichler, MRI-based attenuation correction for PET/MRI: a novel approach combibing pattern recognition and atlas registration, J. Nucl. Med. 49 (2008) 1875-1883. https://doi.org/10.2967/jnumed.107.049353
  18. M. Hofmann, B. Pichler, B. Scholkopf, T. Beyer, Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques, Eur. J. Nucl. Med. Imag. 36 (2009) S93-S104. https://doi.org/10.1007/s00259-008-1007-7
  19. C.R. Park, Y. Lee, H. Yang, Attenuation effect of PET images with and without the magnetic resonance breast coil using various MR attenuation correction sequences, Jpn. Mag. 23 (2018) 375-380.
  20. I.L.H. Reichert, M.D. Robson, P.D. Gatehouse, T. He, K.E. Chappell, J. Holmes, S. Girgis, G.M. Bydder, Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences, J. Magn. Reson. Imag. 23 (2005) 611-618. https://doi.org/10.1016/j.mri.2005.02.017
  21. A. Waldman, J.H. Rees, C.S. Brock, M.D. Robson, P.D. Gatehouse, G.M. Bydder, MRI of the brain with ultra-short echo-time pulse sequences, Neuroradiology 45 (2003) 887-892. https://doi.org/10.1007/s00234-003-1076-z
  22. M.D. Robson, G.M. Bydder, Clinical ultrashort echo time imaging of bone and other connective tissues, NMR Biomed. 19 (2006) 768-780.
  23. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Hasse, Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magn. Reson. Med. 47 (2002) 1202-1210. https://doi.org/10.1002/mrm.10171
  24. F.A. Breuer, M. Blaimer, M.F. Mueller, N. Seiberlich, R.M. Heidemann, M.A. Griswold, P.M. Jakob, Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA), Magn. Reson. Med. 55 (2006) 549-556. https://doi.org/10.1002/mrm.20787
  25. F.A. Breuer, M. Blaimer, R.M. Heidemann, M.F. Mueller, M.A. Griswold, P.M. Jakob, Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging, Magn. Reson. Med. 53 (2005) 684-691. https://doi.org/10.1002/mrm.20401
  26. R. Boellaard, I. Rausch, T. Beyer, G. Delso, M. Yaqub, H.H. Quick, B. Sattler, Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems, Med. Phys. 42 (2015) 5961-5969. https://doi.org/10.1118/1.4930962
  27. B. Zhang, D. Pal, Z. Hu, N. Ojha, T. Guo, G. Muswick, C. Tung, J. Kaste, Attenuation correction for MR table and coils for a sequential PET/MR system, in: IEEE Nuclear Science Symp. Conf. Record, NSS/MIC, 2009. http://doi.org/10.1109/NSSMIC.2009.5401737.
  28. Y. Berker, J. Franke, A. salomon, M. Palmowski, H.C.W. Donker, Y. Temur, F.M. Mottaghy, C. kuhl, D.I. Garcia, Z.A. Fayad, F. Kiessling, MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon MRI sequence, J. Nucl. Med. 53 (2012) 796-804. https://doi.org/10.2967/jnumed.111.092577
  29. V. Keereman, Y. Fierens, T. Broux, Y.D. Deene, M. Lonneux, S. Vandenberghe, MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences, J. Nucl. Med. 51 (2010) 812-818. https://doi.org/10.2967/jnumed.109.065425

Cited by

  1. Quantitative Imaging in Inflammatory Arthritis: Between Tradition and Innovation vol.24, pp.4, 2020, https://doi.org/10.1055/s-0040-1708823
  2. Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system vol.53, pp.7, 2021, https://doi.org/10.1016/j.net.2021.01.011