• Title/Summary/Keyword: Complete observability

Search Result 14, Processing Time 0.029 seconds

Controllability and Observability of Sylvester Matrix Dynamical Systems on Time Scales

  • Appa Rao, Bhogapurapu Venkata;Prasad, Krosuri Anjaneya Siva Naga Vara
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.529-539
    • /
    • 2016
  • In this paper, we obtain solution for the first order matrix dynamical system and also we provide set of necessary and sufficient conditions for complete controllability and complete observability of the Sylvester matrix dynamical system.

A Multi-objective Placement of Phasor Measurement Units Considering Observability and Measurement Redundancy using Firefly Algorithm

  • Arul jeyaraj, K.;Rajasekaran, V.;Nandha kumar, S.K.;Chandrasekaran, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.474-486
    • /
    • 2015
  • This paper proposes a multi-objective optimal placement method of Phasor Measurement Units (PMUs) in large electric transmission systems. It is proposed for minimizing the number of PMUs for complete system observability and maximizing measurement redundancy of the buses, simultaneously. The measurement redundancy of the bus indicates that number of times a bus is able to monitor more than once by PMUs set. A high level of measurement redundancy can maximize the system observability and it is required for a reliable power system state estimation. Therefore, simultaneous optimizations of the two conflicting objectives are performed using a binary coded firefly algorithm. The complete observability of the power system is first prepared and then, single line loss contingency condition is added to the main model. The practical measurement limitation of PMUs is also considered. The efficiency of the proposed method is validated on IEEE 14, 30, 57 and 118 bus test systems and a real and large- scale Polish 2383 bus system. The valuable approach of firefly algorithm is demonstrated in finding the optimal number of PMUs and their locations by comparing its performance with earlier works.

Complete and Incomplete Observability Analysis by Optimal PMU Placement Techniques of a Network

  • Krishna, K. Bala;Rosalina, K. Mercy;Ramaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1814-1820
    • /
    • 2018
  • State estimation of power systems has become vital in recent days of power operation and control. SCADA and EMS are intended for the state estimation and to communicate and monitor the systems which are operated at specified time. Although various methods are used we can achieve the better results by using PMU technique. On placing the PMU, operating time is reduced and making the performance reliable. In this paper, PMU placement is done in two ways. Those are 'optimal technique with pruning operation' and 'depth of unobservability' considering incomplete and complete observability of a network. By Depth of Unobservability Number of PMUs are reduced to attain Observability of the network. Proposed methods are tested on IEEE 14, 30, 57, SR-system and Sub systems (1, 2) with bus size of 270 and 444 buses. Along with achieving complete observability analysis, single PMU loss condition is also achieved.

The uniform observability and the error characteristics for stationary strapdown inertial navigation system (스트랩다운 관성항법시스템의 정지시 균일 관측 가능성 및 오차 특성 분석)

  • 정도형;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.676-679
    • /
    • 1996
  • In this paper, the uniform observability and the error characteristics for stationary SDINS error are analyzed. The use of the Lyapunov transformation is proposed for transforming te conventional SDINS error model and the sufficient conditions for the uniform observability of SDINS error model are analytically derived. A complete characterization for the SDINS error characteristics during two position alignment is presented which allows us to predict the performance of two position alignment in SDINS.

  • PDF

Two-position alignment of strapdown inertia navigation system

  • Lee, Jang-Gyu;Kim, Jin-Won;Park, Heong-won;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.665-671
    • /
    • 1994
  • Some extended results in the study of two-position alignment for strapdown inertial navigation system are presented. In [1], an observability analysis for two-position alignment was done by analytic rank test of the stripped observability matrix and numerical calculation of the error covariance propagation using ten-state error model. In this paper, it is done by an analytic approach which utilizes the nonsingular condition of the determinant of simplified stripped observability matrix and by numerical calculation of the error covariance propagation accomplished in more cases than [1], and the twelve-state error model including vertical channel is used instead of ten-state error model. In addition, it is confirmed that this approach more clearly produces the same result as shown in the original work in terms of complete observability and there exist some better two-position configurations than [1] using the twelve-state error model.

  • PDF

PRACTICAL OBSERVER FOR IMPULSIVE SYSTEMS

  • Ellouze, Imen
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.99-111
    • /
    • 2014
  • In this paper, we deal with the problem of practical observer design and the practical stabilization for a class of perturbed impulsive systems. We show that, under the classical conditions of uniform complete controllability and uniform complete observability of the nominal system without impulsive effects, it is possible to design an observer controller for a class of perturbed linear impulsive system when the origin is not an equilibrium point.

The Effects of Fashion Innovativeness and Style-Innovation Attributes of Fashion Adoption (유행혁신성과 스타일 혁신속성이 유행채택에 미치는 영향)

  • Jun, Dae-Geun;Rhee, Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.10
    • /
    • pp.1564-1574
    • /
    • 2009
  • This study identifies the effects of fashion innovativeness and style-innovation attributes of young female adults in fashion adoption. Date collecting using a written survey instrument yielded 801 complete responses from female consumers between the ages 20 and 39. A factor analysis on style-innovation attributes resulted in 5 dimensional structures: relative advantage, compatibility, trialability, observability, and perceived risk. 5 groups divided by the level of fashion innovativeness showed meaningful differences on style innovation attributes. The more a group showed fashion innovativeness, the higher the level of relative advantage, compatibility, trialability, and observability the group expressed, but the more a group showed fashion innovativeness, the lower the level of perceived risk expressed by the group. To analyze fashion adoption of the samples, 5 dimensions of style-innovation attributes and fashion innovativeness were adopted as explanatory variables. All of these variables (except observability) significantly and positively affected fashion adoption; however, perceived risk significantly and negatively affected fashion adoption.

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Kim, Sungho;Urm, Jaejung;Kim, Dae Shik;Lee, Kihong;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2327-2335
    • /
    • 2018
  • Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.