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PRACTICAL OBSERVER FOR IMPULSIVE SYSTEMS

Imen Ellouze

Abstract. In this paper, we deal with the problem of practical observer
design and the practical stabilization for a class of perturbed impulsive
systems. We show that, under the classical conditions of uniform complete
controllability and uniform complete observability of the nominal system
without impulsive effects, it is possible to design an observer controller
for a class of perturbed linear impulsive system when the origin is not an
equilibrium point.

1. Introduction

Impulsive systems describing evolution processes exhibit impulsive dynami-
cal behaviors due to abrupt changes at certain instants during the continuous
dynamical processes. Systems of such type have increasingly been at the center
of attention in recent years due to their wide range of applications in practice,
for examples in population dynamics in relation to impulsive vaccination [11],
population ecology [10], drug distribution in the human body [5], management
of renewable resources. . ..

Unlike the stability problem that has been extensively studied in the litera-
ture ([7], [8], [9]), the observer design and stabilization problems for impulsive
systems has attracted less attention and not as many works are available in
this area ([1], [2], [3], [12]).

One attempt to implement the feedback law is to construct an observer
for estimating the state and then to feedback the estimated state using the
separation principle. Hence the construction of observers is useful and essential
for control purposes.

Taking into account that mathematical models of complex systems usually
contain model errors and that exogenous perturbations are ubiquitous it is
natural to consider systems with time varying perturbations and look the state
estimation and the stabilization problems.

In this paper we derive a practical impulsive observer which yields perfor-
mance equivalent to the Kalman’s one (see [4]). Indeed, we propose a Kalman
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type observer for a class of linear time-varying impulsive systems perturbed by
a nonlinearity, in the case of continuous-time observation function. We prove
that it is possible, under the assumptions of uniform complete controllability,
uniform complete observability of the associated continuous system and some
others assumptions made in impulsive matrices Dk, to construct a practical
observer.

This kind of observer is very useful for designing practical controller of such
systems since, in many cases, controlling a system to an idealized point is either
expensive or impossible in the presence of disruptions.

An outline of this paper is as follows. Some definitions and lemma which are
useful for stating the main results, are given in Section 2. Section 3, focuses
on the problem of practical observer design for linear time-varying impulsive
perturbed systems. Section 4, has the objective of practical stabilization for
the same class. Finally, in Section 5, a separation principle is established.

Notation. Throughout this paper, I denotes the identity matrix. The notation
P > 0 is that the matrix P is positive definite, PT is its transpose matrix,
λmin(P ) and λmax(P ) are the smallest eigenvalue of the symmetric matrix and
the largest one respectively. For x ∈ R

n, X ∈ R
n×n, let ‖ x ‖ be the Euclidean

vector norm and ‖ X ‖=
√

λmax(XTX) the induced matrix norm. Bρ = {x ∈
R

n/ ‖ x ‖< ρ}. We denote by

• C[R+,R] the set of functions ψ : R+ → R which are continuous;
• PC1[R+,R] the set of functions ψ : R+ → R which are piecewise con-
tinuous differentiable.

2. Preliminaries

Consider the following time-varying impulsive system:

(2.1)

ẋ = F (t, x), t 6= tk

∆x = Ik(x),

y = h(t, x),

where

• F, h : R+ × R
n → R

n are continuous.
• Ik : Rn → R

n is continuous.
• t0 < t1 < · · · < tk < · · · , limk→+∞ tk = +∞;
• ∆x(tk) = x(t+k ) − x(t−k ), where x(t

+
k ) = limh→0+ x(tk + h), x(t−k ) =

limh→0+ x(tk − h), and x(t−k ) = x(tk).

Definition 1. (1) The system (2.1) is said to be uniformly practically ex-
ponentially stable (UPES) with respect to Bρ with region of attraction
Ω, if there exists a constant λ > 0, such that for all t0 ≥ 0, x0 ∈ Ω,
there exists K ≥ 0 such that

‖ x(t) ‖≤ ρ+K ‖ x0 ‖ e−λ(t−t0).
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(2) The system (2.1) is said to be globally uniformly practically exponen-
tially stable (GUPES) with respect to Bρ if it is (UEPS) with respect
to Bρ and with R

n as the region of attraction.

Lemma 1 ([6]). Assume that

(1) v ∈ PC1[R+,R] and v(t) is left continuous at tk, k = 1, 2, . . . .
(2) for k = 1, 2, . . ., t ≥ t0,

D+v(t) ≤ a(t)v(t) + b(t), v(t+k ) ≤ ckv(tk) + dk,

where a, b ∈ C[R+,R], ck > 0, and dk are constants.

Then

v(t) ≤ v(t0)
(

∏

t0<tk<t

ck

)

e
∫

t

t0
a(s)ds

+
∑

t0<tk<t

(

∏

t0<tj<t

cj

)

e
∫

t

tk
a(s)ds

dk

+

∫ t

t0

(

∏

s<tk<t

ck

)

e
∫

t

s
a(u)dub(s)ds.

3. State estimation

In this subsection, we are interested in designing a practical exponential
observer for a certain class of perturbed impulsive systems. We use the second
Lyapunov method to prove the practical exponential stability of the estimation
error. Let us consider the linear impulsive system described by







ẋ(t) = A(t)x(t) +B(t)u(t), t 6= tk,
∆x(tk) = Dkx(t

−
k ),

y(t) = C(t)x(t),
(3.1)

where

• t0 < t1 < · · · < tk < · · · , limk→+∞ tk = +∞;
• A(t) = (aij(t)) ∈ R

n×n, B(t) = (bij(t)) ∈ R
n×p, C(t) = (cij(t)) ∈

R
q×n, where aij , bij , cij are uniformly bounded and piecewise continu-

ous functions from R
+ to R, with discontinuities of the first kind only

at t = tk, k = 1, 2, . . .;
• u(t) ∈ R

p is the input vector. As usual, the admissible control input
are limited to piecewise continuous functions;

• y(t) ∈ R
q is the output vector;

• for all k ≥ 0, Dk ∈ R
n×n are known constant matrices;

• ∆x(tk) = x(t+k ) − x(t−k ), where x(t
+
k ) = limh→0+ x(tk + h), x(t−k ) =

limh→0+ x(tk − h), and x(t−k ) = x(tk), which implies that the solution
of (2.1) is left continuous at tk.

Under some perturbation which can be caused by errors in measuring or mod-
eling, the perturbed impulsive system has the form:







ẋ(t) = A(t)x(t) + g(t, x(t)) +B(t)u(t), t 6= tk,
∆x(tk) = Dkx(t

−
k ),

y(t) = C(t)x(t),
(3.2)
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where the perturbation function g(t, x) is piecewise continuous in t with dis-
continuities of the first kind at t = tk such that lim(t,y)→(tk,x) g(t, y) exists;
and globally Lipschitz with respect to x. In the general case, we suppose that
g(t, 0) 6= 0, ∀t ≥ 0. This means that the origin is not necessarily an equilibrium
point.

In the remainder of this subsection, the following assumptions are introduced
to design the proposed observer.

(A1) System (3.1) is uniformly completely observable.
(A2) Suppose that ‖ I +Dk ‖≤ dk < 1 and

∑

k≥0 dk < +∞.

(A3) Suppose that the perturbation term g(t, x) satisfies the following
estimate

‖ g(t, x) ‖≤ λ(t), ∀t ≥ 0, ∀x ∈ R
n,

where λ : R → R is a nonnegative continuous function on [0,+∞[.

For system (3.2) we establish the following result.

Theorem 1. Let assumptions (A1)−(A2) and (A3) hold. In addition, assume

that λ(t) in (A3) is integrable on [0,+∞[. Then there exists a practical observer

for the perturbed impulsive system (3.2), of the form

˙̂x(t) = A(t)x̂(t) + g(t, x̂(t)) +B(t)u(t)− L(t)(C(t)x̂(t)− y(t)), t 6= tk,(3.3)

∆x̂(tk) = Dkx̂(tk),

with L(t) given by

Ṁ(t) = A(t)M(t)+M(t)AT (t)−M(t)CT (t)W−1C(t)M(t)+P, t 6= tk,(3.4)

M(0) =M0 =MT
0 > 0, W =WT > 0,

L(t) =M(t)CT (t)W−1, with P = PT > 0.

Proof. Let e(t) = x̂(t)− x(t) denote the estimation error. Then its dynamic is
described by

ė(t) =
(

A(t)− L(t)C(t)
)

e(t) +
(

g(t, x̂)− g(t, x)
)

, t 6= tk,(3.5)

∆e(tk) = Dke(t
−
k ).

Let us consider the following Lyapunov function candidate

V (t, e) = eT (t)M−1(t)e(t).

On one hand, the Dini derivative of V along the trajectories of (3.5) for t 6= tk
is given by

D+V(3.5)(t, e) = e(t)T
(

−M−1(t)PM−1(t)− CT (t)W−1C(t)
)

e(t)

+ 2
(

g(t, x̂)− g(t, x)
)T

M−1e(t)

≤ − e(t)TM−1(t)PM−1(t)e(t) + 4βλ(t)e(t).
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Recall that there exist positive constants α, β and t0 such that for all t ≥ t0:
0 < αI ≤ M−1(t) ≤ βI basically from the condition of uniform complete
observability (see [4]). Let λmin(P ) > 0 be the smallest eigenvalue of the
symmetric matrix P . Then for all t ≥ t0, we have

−M−1(t)PM−1(t) ≤ −λmin(P )αM
−1(t).

This implies that

D+V(3.5)(t) ≤ −λmin(P )αV (t) +
4βλ(t)√

α

√

V (t).

Let w(t) =
√

V (t). We use the fact that

D+w(3.5)(t) =
D+V(3.5)(t)

2
√

V (t)

if V (t) 6= 0 to obtain the inequality

D+w(3.5)(t) ≤ −
(λmin(P )α

2

)

w(t) +
2β√
α
λ(t)

which holds for V (t) = 0 (D+w(3.5)(t) ≤ 2β√
α
λ(t)).

Now, for t = tk we have

V (t+k , e(t
+
k )) =

(

e(tk) +Dke(tk)
)T
M−1(t)

(

e(tk) +Dke(tk)
)

≤ ‖ I +Dk ‖2 β
α
V (tk, e(tk))

≤ βd2k
α
V (tk, e(tk)).

Then we obtain

w(t+k ) ≤ dk

√

β

α
w(tk).

Then by using the comparison lemma, we obtain

w(t) ≤ w(t0)
(

∏

t0<tk<t

dk

√

β

α

)

× e
−
(

λmin(P )α

2

)

(t−t0)

+
2β√
α

∫ t

t0

(

∏

s<tk<t

dk

√

β

α

)

e
−
(

λmin(P )α

2

)

(t−s)
λ(s)ds.

This gives the estimate

‖ e(t) ‖≤ ‖ e(t0) ‖
√

β

α

(

∏

t0<tk<t

dk

√

β

α

)

× e
−
(

λmin(P )α

2

)

(t−t0)

+
2β

α

∫ t

t0

(

∏

s<tk<t

dk

√

β

α

)

e
−
(

λmin(P )α

2

)

(t−s)
λ(s)ds.
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Then

‖ e(t) ‖≤ ‖ e(t0) ‖
√

β

α

(

+∞
∏

k=0

dk

√

β

α

)

× e
−
(

λmin(P )α

2

)

(t−t0)

+
2β

α

(

∏

s<tk<t

dk

√

β

α

)

∫ +∞

t0

λ(s)ds.

It follows that system (3.5) is uniformly practically exponentially stable with
respect to the ball Bρ with

ρ =
2λ̄β

α

(

∏

s<tk<t

dk

√

β

α

)

,

where λ̄ =
∫ +∞
t0

λ(s)ds. �

Remark 1. Note that the convergence of the series
∑

k≥0 dk implies the con-

vergence of the infinite product
∏+∞

k=0

(

dk

√

β
α

)

.

3.1. Practical example

Let now consider an other mathematical model which may result from im-
pulsive vaccination affectation and which is very useful to control diseases in
ecological problems (see [11]). Such model is described by the following impul-
sive system







ẋ(t) = A(t)x(t) + g(t, x(t)) +B(t)u(t), t 6= tk,
x(t+k ) = pkx(tk),
y(t) = C(t)x(t),

(3.6)

where ∀k ≥ 0, pk ∈ R
+.

Corollary 1. Let assumptions (A1) and (A3) hold. In addition, assume that
∑

k≥0 pk < +∞ and λ(t) in (A3) is integrable on [0,+∞[. Then there exists a

practical observer for the impulsive system (3.6), of the form

˙̂x(t) = A(t)x̂(t) + g(t, x̂(t)) +B(t)u(t)− L(t)(C(t)x̂(t)− y(t)), t 6= tk,(3.7)

x̂(t+k ) = pkx̂(tk),

where L(t) is given by (3.4).

Proof. The proof is the same as for the above theorem until the following
inequality: for t 6= tk,

D+w(t) ≤ −
(λmin(P )α

2

)

w(t) +
2β√
α
λ(t).

Then for t = tk, we have

V (t+k , e(t
+
k )) = V (t+k , pke(tk) ≤

p2kβ

α
V (tk, e(tk)).
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Then we have

w(t+k ) ≤ pk

√

β

α
w(tk).

Then by using the comparison lemma, we obtain

w(t) ≤ w(t0)
(

∏

t0<tk<t

pk

√

β

α

)

× e
−
(

λmin(P )α

2

)

(t−t0)

+
2β√
α

∫ t

t0

(

∏

s<tk<t

pk

√

β

α

)

e
−
(

λmin(P )α

2

)

(t−s)
λ(s)ds,

which gives

‖ e(t) ‖≤ ‖ e(t0) ‖
√

β

α

(

+∞
∏

k=0

pk

√

β

α

)

× e
−
(

λmin(P )α

2

)

(t−t0)

+
2λ̄β

α

(

∏

s<tk<t

pk

√

β

α

)

∫ +∞

t0

λ(s)ds,

where λ̄ =
∫ +∞
t0

λ(s)ds. �

Remark 2. In real processes, as well as in predator-prey model with disease in
the prey, we release infective prey population and predator population impul-
sively with constant amounts pk > 0, for integrated pest management [10]. For
this natural phenomena, we have the following particular model







ẋ(t) = A(t)x(t) + g(t, x(t)) +B(t)u(t), t 6= tk,
x(t+k ) = x(tk) + pk,
y(t) = C(t)x(t),

(3.8)

where ∀k ≥ 0, pk ∈ R
+. For this system, if we consider an observer like

previously, it is not difficult to verify that the observer error is reduced to a
continuous dynamic.

4. Stabilization

We shall construct now a linear feedback law which makes solutions of the
perturbed system (3.2) uniformly exponentially stable toward a new neighbor-
hood of the origin. For this purpose, we need the following assumption:

(A4) System (3.1) is uniformly completely controllable.

Theorem 2. Let assumptions (A2)-(A3) and (A4) hold. In addition, assume

that λ(t) in (A3) is integrable on [0,+∞[. Then there exists a gain matrix K(t)
given by

Ṅ(t) = A(t)N(t) +N(t)AT (t)−N(t)BT (t)X−1B(t)N(t) +Q, t 6= tk,(4.1)

N(0) = N0 = NT
0 > 0, X = XT > 0,
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K(t) = N(t)BT (t)X−1, with Q = QT > 0,

such that the closed-loop system

ẋ(t) =
(

A(t)−B(t)K(t)
)

x(t) + g(t, x(t)), t 6= tk,(4.2)

∆x(tk) = Dkx(tk),

is globally uniformly practically exponentially stable.

Proof. Let us consider the following Lyapunov function

V (t, x) = xT (t)N−1(t)x(t).

On one hand, the Dini derivative of V along the trajectories of (4.2) for t 6= tk
is given by

D+V(4.2)(t, x) = x(t)T
(

−N−1(t)QN−1(t)−BT (t)X−1B(t)
)

x(t)

+ 2g(t, x)TN−1x(t).

We know that there exist positive constants α
′

, β
′

and t0 such that for all t ≥ t0:
0 < α

′

I ≤ N−1(t) ≤ β
′

I (see [4]). Let λmin(Q) > 0 be the smallest eigenvalue
of the symmetric matrix Q. Then for all t ≥ t0, we have

−N−1(t)QN−1(t) ≤ −λmin(Q)α
′

N−1(t).

This implies that

D+V(4.2)(t) ≤ −λmin(Q)α
′

V (t) +
2β

′

λ(t)√
α′

√

V (t).

Let w(t) =
√

V (t). Then we have the following inequality, if v(t) 6= 0 :

D+w(4.2)(t) ≤ −
(λmin(Q)α

′

2

)

w(t) +
β

′

√
α′

λ(t).

Now, for t = tk we have

V (t+k , x(t
+
k )) = V (t+k , x(tk) + ∆x(tk))

≤ ‖ I +Dk ‖2 β′ ‖ x(tk) ‖2

≤ β
′

d2k
α′

V (tk, x(tk)).

Then we obtain

w(t+k ) ≤ dk

√

β′

α′
w(tk).

Then by using the comparison lemma, we obtain

w(t) ≤ w(t0)
(

∏

t0<tk<t

dk

√

β′

α′

)

× e
−
(

λmin(Q)α
′

2

)

(t−t0)

+
β

′

√
α′

∫ t

t0

(

∏

s<tk<t

dk

√

β′

α′

)

e
−
(

λmin(Q)α
′

2

)

(t−s)
λ(s)ds.
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Then

‖ x(t) ‖≤ ‖ x(t0) ‖
√

β′

α′

(

+∞
∏

k=0

dk

√

β′

α′

)

× e
−
(

λmin(Q)α
′

2

)

(t−t0)

+
β

′

α′

(

+∞
∏

k=0

dk

√

β′

α′

)

∫ +∞

t0

λ(s)ds,

and we can conclude that the closed-loop system is uniformly practically ex-
ponentially stable with respect to the ball Bρ with

ρ =
λ̄β

′

α′

(

+∞
∏

k=0

dk

√

β′

α′

)

,

where λ̄ =
∫ +∞
t0

λ(s)ds. �

5. Separation principle

Let K(t) be a gain matrix such that system (4.2) is practically exponentially
stable and L(t) a gain matrix such that system (3.3) is an observer for (3.2),
we consider the following system obtained as the union of (3.3) and (4.2).

ẋ(t) = A(t)x(t) + g(t, x(t))−B(t)K(t)x̂(t), t 6= tk,

˙̂x(t) = A(t)x̂(t) + g(t, x̂(t))−B(t)K(t)x̂(t)− L(t)(C(t)x̂(t)− y(t)), t 6= tk,

∆x(tk) = Dkx(tk),

∆x̂(tk) = Dkx̂(tk).

In order to show that this system is practically exponentially stable, we re-write
it by letting e = x̂− x:

ẋ(t) =
(

A(t) −B(t)K(t)
)

x(t) + g(t, x(t))−B(t)K(t)e(t), t 6= tk,(5.1)

ė(t) =
(

A(t) − L(t)C(t)
)

e(t) +
(

g(t, e(t) + x(t)) − g(t, x(t))
)

, t 6= tk,

∆x(tk) = Dkx(tk),

∆e(tk) = Dke(tk).

Theorem 3. Let assumptions (A1)-(A2)-(A3) and (A4) hold. In addition, as-

sume that λ(t) in (A3) is integrable on [0,+∞[. Then there exist gain matrices

K(t) and L(t) given by (4.1) and (3.4) respectively such that system (5.1) is

globally uniformly practically exponentially stable.

Proof. Define the Lyapunov function v as follows

v(e, x) := eT (t)M−1(t)e(t) + axT (t)N−1(t)x(t) = ve(t) + avx(t),

where a > 0. Recall that there exist positive constants α, α
′

, β, β
′

and t0 such
that ∀t ≥ t0, we have

0 < αI ≤M−1(t) ≤ βI
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0 < α
′

I ≤ N−1(t) ≤ β
′

I.

It is easily to verify that there exist λ1 > 0, λ2 > 0 such that

0 < λ1 ‖ (e, x) ‖2≤ v(e, x) ≤ λ2 ‖ (e, x) ‖2 .(5.2)

The Dini derivative of v along the trajectories of (5.1) for t 6= tk is given by

D+v(5.1)(e, x) = 2e(t)TM−1(t)
d

dt
(e(t)) + e(t)T

d

dt
(M−1(t))e(t)

+ 2ax(t)TN−1(t)
d

dt
(x(t)) + ax(t)T

d

dt
(N−1(t))x(t)

≤ − e(t)TM−1(t)PM−1(t)e(t)

+ 2β ‖ g(t, e(t) + x(t)) − g(t, x(t)) ‖‖ e(t) ‖
− ax(t)TN−1(t)QN−1(t)x(t) − 2ax(t)TN−1(t)B(t)K(t)e(t)

+ 2ax(t)TN−1(t)g(t, x(t))

≤ − λmin(P )α
2 ‖ e(t) ‖2 −aλmin(Q)α

′2 ‖ x(t) ‖2

+ 4βλ(t) ‖ e(t) ‖ +2aβ
′

λ(t) ‖ x(t) ‖
+ 2aβ

′ ‖ B(t)K(t) ‖‖ e(t) ‖‖ x(t) ‖ .
We know that ∀ε > 0,

2 ‖ e(t) ‖‖ x(t) ‖≤ (
1

ε
‖ e(t) ‖2 +ε ‖ x(t) ‖2).

Then

D+v(5.1)(e, x) ≤ − λmin(P )α
2 ‖ e(t) ‖2 −aλmin(Q)α

′2 ‖ x(t) ‖2

+ 4βλ(t) ‖ e(t) ‖ +2aβ
′

λ(t) ‖ x(t) ‖

+ aβ
′ ‖ B(t)K(t) ‖

(1

ε
‖ e(t) ‖2 +ε ‖ x(t) ‖2

)

= −
(

λmin(P )α
2 − aβ

′ ‖ B(t)K(t) ‖
ε

)

‖ e(t) ‖2

− a
(

λmin(Q)α
′2 − εβ

′ ‖ B(t)K(t) ‖
)

‖ x(t) ‖2

+ 4βλ(t) ‖ e(t) ‖ +2aβ
′

λ(t) ‖ x(t) ‖

≤ −
(

λmin(P )α
2 − aβ

′ ‖ B(t)K(t) ‖
ε

)

‖ e(t) ‖2

− a
(

λmin(Q)α
′2 − εβ

′ ‖ B(t)K(t) ‖
)

‖ x(t) ‖2

+
4β√
α
λ(t)

√

ve(t) +
2aβ

′

√
α′

λ(t)
√

vx(t).

First, we must choose the variable ε > 0 such that

λmin(Q)α
′2 − εβ

′ ‖ B(t)K(t) ‖> 0.
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Subsequently we choose the variable a > 0 such that

λmin(P )α
2 − aβ

′ ‖ B(t)K(t) ‖
ε

> 0.

Then by (5.2), it is easy to verify that there exists a constant η > 0 such that

(5.3) D+v(5.1)(e, x) ≤ −ηv(e, x) +
( 4β√

α
+

2
√
aβ

′

√
α′

)

λ(t)
√

v(e, x), ∀t 6= tk.

Let w(t) =
√

v(e, x). Then we derive the following inequality

(5.4) D+w(5.1)(t) ≤ −η
2
w(t) +

( 2β√
α
+

√
aβ

′

√
α′

)

λ(t), ∀t 6= tk.

For t = tk we obtain

v(e(t+k ), x(t
+
k )) = v(e(tk) + ∆e(tk), x(tk) + ∆x(tk))

≤ ‖ I +Dk ‖2 β
α
ve(tk) + a ‖ I +Dk ‖2 β

′

α′
vx(tk)

≤ βd2k
α
ve(tk) + a

β
′

d2k
α′

vx(tk)

≤ d2k

(βα
′

+ αβ
′

αα′

)

v(e(tk), x(tk)),

which gives

(5.5) w(t+k ) ≤ dk

√

βα′ + αβ′

αα′
w(tk).

Then by (5.4), (5.5) and the comparison lemma, we get

w(t) ≤ w(t0)
(

∏

t0<tk<t

dk

√

βα′ + αβ′

αα′

)

× e−
η
2 (t−t0)

+
( 2β√

α
+

√
aβ

′

√
α′

)

∫ t

t0

(

∏

s<tk<t

dk

√

βα′ + αβ′

αα′

)

× e−
η
2 (t−s)λ(s)ds

≤ w(t0)
(

+∞
∏

k=0

dk

√

βα′ + αβ′

αα′

)

× e−
η
2 (t−t0)

+
( 2β√

α
+

√
aβ

′

√
α′

)(

+∞
∏

k=0

dk

√

βα′ + αβ′

αα′

)

×
∫ +∞

t0

λ(s)ds.

By (5.2), it follows that

‖ (e, x) ‖≤ ‖ (e0, x0) ‖
√

λ2
λ1

(

+∞
∏

k=0

dk

√

βα′ + αβ′

αα′

)

× e−
η
2 (t−t0)
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+
( 2β√

α
+

√
aβ

′

√
α′

)(

+∞
∏

k=0

dk

√

βα′ + αβ′

αα′

)

×
∫ +∞

t0

λ(s)ds.

This proves that system (5.1) is uniformly practically exponentially stable with
respect to the ball Bρ with

ρ = λ̄
( 2β√

α
+

√
aβ

′

√
α′

)(

+∞
∏

k=0

dk

√

βα′ + αβ′

αα′

)

,

where λ̄ =
∫ +∞
t0

λ(s)ds. �

6. Conclusion

This paper addresses observer-based control of a class of linear impulsive sys-
tems with non-vanishing perturbation. In particular, we present an observer
construction and a state feedback construction that deliver practical regulation
of the observer estimation error response and closed-loop state response, respec-
tively, in a uniform-ultimate-boundedness sense with exponential convergence
to an ultimate bound.
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