Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.1.099

PRACTICAL OBSERVER FOR IMPULSIVE SYSTEMS  

Ellouze, Imen (Department of Mathematics Faculty of Sciences University of Sfax)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 99-111 More about this Journal
Abstract
In this paper, we deal with the problem of practical observer design and the practical stabilization for a class of perturbed impulsive systems. We show that, under the classical conditions of uniform complete controllability and uniform complete observability of the nominal system without impulsive effects, it is possible to design an observer controller for a class of perturbed linear impulsive system when the origin is not an equilibrium point.
Keywords
impulsive perturbed systems; practical observer design; practical stabilization; separation principle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Benhamed, I. Ellouze and M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math. 8 (2011), no. 4, 603-616.   DOI
2 I. Ellouze and M. A. Hammami, On the practical stability of impulsive control systems with multiple time delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), 341-356.
3 A. M. Enrique and A. L. Douglas, State estimation for linear impulsive systems, In Proc. Amer. Control Conf. (2009), 1183-1188.
4 J.-P. Gauthier and I. Kupka, Deterministic Observation Theory and Applications, Cambridge Math. Lib., 2000.
5 E. Kruger-Thiemer, Formal theory of drug dosage regiments, I. J. Theoret. Biol. 13 (1966), 212-235.   DOI
6 V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
7 X. Liu, Stability of impulsive control systems with time delay, Math. Comput. Modelling 39 (2004), no. 4-5, 511-519.   DOI   ScienceOn
8 P. Naghshtabrizi, I. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems Control Lett. 57 (2008), no. 5, 378-385.   DOI   ScienceOn
9 F. L. Pereira and G. N. Silva, Stability for impulsive control systems, Dyn. Syst. 17 (2002), no. 4, 421-434.   DOI   ScienceOn
10 S. Ruiqing and C. Lansun, An impulsive predator-prey model with disease in the prey for integrated pest management, Commun. Nonlinear Sci. Numer. Simul. 15 (2009), no. 2, 421-429.
11 S. Ruiqing, J. Xiaowu and C. Lansun, The effect of impulsive vaccination on an sir epidemic model, Appl. Math. Comput. 212 (2009), no. 2, 305-311.   DOI   ScienceOn
12 G. Xie and L. Wang, Controllability and observability of a class of linear impulsive systems, J. Math. Anal. Appl. 304 (2005), no. 1, 336-355.   DOI   ScienceOn