1 |
B. Benhamed, I. Ellouze and M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math. 8 (2011), no. 4, 603-616.
DOI
|
2 |
I. Ellouze and M. A. Hammami, On the practical stability of impulsive control systems with multiple time delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), 341-356.
|
3 |
A. M. Enrique and A. L. Douglas, State estimation for linear impulsive systems, In Proc. Amer. Control Conf. (2009), 1183-1188.
|
4 |
J.-P. Gauthier and I. Kupka, Deterministic Observation Theory and Applications, Cambridge Math. Lib., 2000.
|
5 |
E. Kruger-Thiemer, Formal theory of drug dosage regiments, I. J. Theoret. Biol. 13 (1966), 212-235.
DOI
|
6 |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
|
7 |
X. Liu, Stability of impulsive control systems with time delay, Math. Comput. Modelling 39 (2004), no. 4-5, 511-519.
DOI
ScienceOn
|
8 |
P. Naghshtabrizi, I. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems Control Lett. 57 (2008), no. 5, 378-385.
DOI
ScienceOn
|
9 |
F. L. Pereira and G. N. Silva, Stability for impulsive control systems, Dyn. Syst. 17 (2002), no. 4, 421-434.
DOI
ScienceOn
|
10 |
S. Ruiqing and C. Lansun, An impulsive predator-prey model with disease in the prey for integrated pest management, Commun. Nonlinear Sci. Numer. Simul. 15 (2009), no. 2, 421-429.
|
11 |
S. Ruiqing, J. Xiaowu and C. Lansun, The effect of impulsive vaccination on an sir epidemic model, Appl. Math. Comput. 212 (2009), no. 2, 305-311.
DOI
ScienceOn
|
12 |
G. Xie and L. Wang, Controllability and observability of a class of linear impulsive systems, J. Math. Anal. Appl. 304 (2005), no. 1, 336-355.
DOI
ScienceOn
|