Motzkin and Straus established a close connection between the maximum clique problem and a solution (namely graph-Lagrangian) to the maximum value of a class of homogeneous quadratic multilinear functions over the standard simplex of the Euclidean space in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique problem in graphs. It is useful in practice if similar results hold for hypergraphs. In this paper, we develop a homogeneous multilinear function based on the structure of hypergraphs and their complement hypergraphs. Its maximum value generalizes the graph-Lagrangian. Specifically, we establish a connection between the clique number and the generalized graph-Lagrangian of 3-uniform graphs, which supports the conjecture posed in this paper.
Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.
본 논문은 분산 이동 실시간 시스템의 분석과 명세에서 프로세스와 시스템의 복잡도를 획기적으로 감소하기 위한 방법으로 새로운 이음 선택(Conjunctive Choice) 및 여 선택(Complement Choice) 연산을 제안한다. 여 선택 연산은 두 프로세스의 선택(Choice) 연산이 연동하여 동일한 선택을 도출함을 표현한다. 이음 선택 연산은 프로세스 내의 일련의 선택 연산들 간의 의존성을 표현한다. 이음 선택 연산은 프로세스 복잡도를 선택 연산의 의존성의 수 만큼 기하급수적으로 감소시킨다. 마찬가지로 여 선택 연산은 시스템 복잡도를 선택 연산의 의존성의 수 만큼 기하급수적으로 감소시킨다. 그리하여 복잡도가 획기적으로 감소하게 되어 시스템의 명세와 분석이 용이하게 된다. 이 선택 연산은 ${\delta}$-Calculus 프로세스 대수에서 구현하였다. 또한 예제를 ADOxx 플랫폼에서 개발한 SAVE 도구를 사용하여 보여줌으로써 효과와 효율성을 제시한다.
단순 무방향 그래프 G 의 L(2,1)-coloring은 d(u,v)가 두 정점 사이의 거리일 때 두 가지 조건 (1) d(x,y) = 1 라면 |f(x)-f(y)|≥ 2, (2) d(x,y) = 2 라면 |f(x)-f(y)|≥ 1 을 만족하는 함수 f : V → [0,1,…,k]를 정의하는 것이다. 임의의 L(2,1)-coloring c 에 대하여 G 의 c-span 은 λ(c)=max{|c(u)-c(v)|| u,v∈V} 이며, L(2,1)-coloring number 인 λ(G)는 모든 가능한 c 에 대하여 λ(G) = min{λ(c)} 로 정의된다. 본 논문에서는 Harary의 정리에 기반하여 지름이 2인 그래프에 대하여 여그래프에 해밀턴 경로의 존재여부를 Tabu Search를 사용해 판단하고 이를 통해 λ(G)가 n(=|V|)과 같음을 분석한다.
Let G be a simple graph and let $\={G}$ denotes its complement. We say that G is integral if its spectrum consists entirely of integers. If $\overline{aK_{a}\;{\bigcup}\;{\beta}K_{b}}$ is integral we show that it belongs to the class of integral graphs $[\frac{kt}{\tau}\;{x_0}\;+\;\frac{mt}{\tau}\;z}\;K_{(t+{\ell}n)+{\ell}m}\;\bigcup\;[\frac{kt}{\tau}\;{y_0}\;+\;\frac{(t\;+\;{\ell}n)k\;+\;{\ell}m}{\tau}\;z]n\;K_{em)$, where (i) t, k, $\ell$, m, $n\;\in\;\mathbb{N}$ such that (m, n) = 1, (n,t) = 1 and ($\ell,\;t$) = 1 ; (ii) $\tau\;=\;((t\;+\;{\ell}n)k\;+\;{\ell}m,\;mt)$ such that $\tau\;$\mid$kt$; (iii) ($x_0,\;y_0$) is a particular solution of the linear Diophantine equation $((t\;+\;{\ell}n)k\;+\;{\ell}m)x\;-\;(mt)y\;=\;\tau\;and\;(iv)\;z\;{\geq}\;{z_0}$ where $z_{0}$ is the least integer such that $(\frac{kt}{\tau}\;{x_0}\;+\;\frac{mt}{\tau}\;{z_0})\;\geq\;1\;and\;(\frac{kt}{\tau}\;{y_0}\;+\;\frac{(t+{\ell}n)k+{\ell}m}{\tau}\;{z_0})\;\geq\;1$.
Let G = (V, E) be a graph and k be a positive integer. A $k$-dominating set of G is a subset $S{\subseteq}V$ such that each vertex in $V{\backslash}S$ has at least $k$ neighbors in S. A Roman $k$-dominating function on G is a function $f$ : V ${\rightarrow}$ {0, 1, 2} such that every vertex ${\upsilon}$ with $f({\upsilon})$ = 0 is adjacent to at least $k$ vertices ${\upsilon}_1$, ${\upsilon}_2$, ${\ldots}$, ${\upsilon}_k$ with $f({\upsilon}_i)$ = 2 for $i$ = 1, 2, ${\ldots}$, $k$. In the paper titled "Roman $k$-domination in graphs" (J. Korean Math. Soc. 46 (2009), no. 6, 1309-1318) K. Kammerling and L. Volkmann showed that for any graph G with $n$ vertices, ${{\gamma}_{kR}}(G)+{{\gamma}_{kR}(\bar{G})}{\geq}$ min $\{2n,4k+1\}$, and the equality holds if and only if $n{\leq}2k$ or $k{\geq}2$ and $n=2k+1$ or $k=1$ and G or $\bar{G}$ has a vertex of degree $n$ - 1 and its complement has a vertex of degree $n$ - 2. In this paper we find a counterexample of Kammerling and Volkmann's result and then give a correction to the result.
악성코드 저자 식별은 알려진 악성코드 저자의 특징을 이용하여 알려지지 않은 악성코드의 저자 특징과 비교를 통해 악성코드를 식별하기 위한 연구 분야이다. 바이너리를 이용한 저자 식별 방법은 실질적으로 배포된 악성코드를 대상으로 수집 및 분석이 용이하다는 장점을 갖으나, 소스코드를 이용한 방법보다 특징 활용 범위가 제한된다. 이러한 한계점으로 인해 다수의 저자를 대상으로 정확도가 저하된다는 단점을 갖는다. 본 연구는 바이너리 저자 식별에 한계점을 보완하기 위하여 '바이너리로부터 의미론적 특징 정의'와 '서바이벌 네트워크 개념을 이용한 중복 특징에 대한 허용 범위 정의' 방법을 제안한다. 제안한 방법은 바이너리 정보로부터 Opcode 기반의 그래프 특징을 정의하며, 서바이벌 네트워크 개념을 이용하여 저자별 고유 특징을 선택할 수 있는 허용범위를 정의하는 것이다. 이를 통해 저자별 특징 정의 및 특징 선택 방법을 하나의 기술로 정의할 수 있으며, 실험을 통해 선행연구보다 5.0%의 정확도 향상과 함께 소스코드 기반 분석과 동일한 수준의 정확도 도출이 가능함을 확인할 수 있었다.
LFSR보다 CA가 랜덤성이 우수한 패턴들을 효율적으로 생성함이 알려지면서 그 응용분야가 점차적으로 확대되고 있다. 특히 Nongroup CA는 해쉬함수의 생성, 암호알고리즘, 이미지 압축 등에 응용되고 있다. 본 논문에서는 TPNCA의 성질들을 분석하고, 선형 TPNCA의 0-트리의 기본경로와 순환상태의 사이클 구조를 이용하여 선형 TPNCA의 상태 전이그래프의 정확한 구조를 파악하는데 사용되던 기존의 행렬의 곱셈 연산 방법을 덧셈 연산으로 대체할 수 있음을 보였다. 또한 선형 TPNCA C의 0-트리의 비순환 상태를 여원벡터로 갖는 여원 TPNCA C'은 C와 그 구조가 동형임을 밝힘으로써 선형 TPNCA로부터 여원 TPNCA의 상태들의 위치를 정확하게 파악하여, CA를 이용하는 알고리즘을 개발하는데 있어 선행되어야 하는 CA의 상태를 분석하는 시간을 효과적으로 줄였다.
본 연구의 목적은 담론적 관점에서 수학 교과서를 분석하기 위해 선행 연구를 바탕으로 분석틀을 재구성하고, 중1수학 교과서의 '그래프 정의'에서 단어와 시각적 매개체가 생성하는 의미와 그 통합 관계를 분석하는데 적용하는 것이다. 담론적 관점은 Sfard(2008)의 의사소통학적 관점과 Halliday(1985/2004)의 체계기능언어학을 바탕으로 발전된 사회기호학적 관점이 통합된 것으로 이를 바탕으로 본 연구에서는 단어와 시각적 매개체가 생성하는 의미는 교과서에 구현된 수학을 관념적 메타기능이 실현하는 의미 측면과 학생의 수학적 활동의 참여 유도성을 대인관계적 메타기능이 실현하는 의미 측면으로 구분하여 분석하였고, 단어와 시각적 매개체의 통합 관계는 텍스트적 메타기능 측면에서 분석하였다. 그 결과 첫째, 단어의 관념적 의미는 수학 담론의 밀도가 높았을 뿐 아니라 수학적 활동의 주체가 모호하였고 학생 참여를 요구하는 단어의 대인관계적 의미는 사고보다는 주로 행동 측면이 강조되었다. 시각적 매개체가 구성하는 관념적 의미에서는 내러티브 다이어그램이 결여되었고 대인관계적 의미에서는 정보 제공에 질적 차이가 있었다. 둘째, 단어와 시각적 매개체의 통합 관계는 구체화, 설명, 유사, 보완처럼 다양한 방식을 통한 풍부한 수학 의미 형성을 위해 통합 관계의 다양성을 지향할 필요가 있었다. 이러한 결과는 수학 교과서를 분석하는데 의미를 생성하는 도구로서 단어와 함께 시각적 매개체의 사용을 분석하고 단어와 시각적 매개체의 통합 관계를 분석하였기 때문에 담론적 관점에서 교과서 분석의 새로운 분석틀을 제공한 의미가 있다.
본 논문에서는 멀티미디어 콘텐츠 보호에 대한 반공모 코드를 위한 동적 멀티미디어 핑거프린팅 코드를 설계하는 알고리즘을 제안한다. 기존의 반공모 코드(ACC: Anti-Collusion Code)를 위한 멀티미디어 핑거프린팅 코드는 BIBD(Balanced Incomplete Block Design)의 접속행렬을 보수행렬로 변환하여 k를 k+1로 증대시키는 수리적 방법으로 설계되었다. 그리고 보수행렬의 코드벡터를 사용자에게 핑거프린팅 코드로 부여하고, 콘텐츠에 삽입하였다. 제안된 알고리즘에서는 사용자가 구매하는 콘텐츠로부터 특징점을 추출하고, 이를 기반으로 동적으로 핑거프린팅 코드를 설계할 수 있도록 BIBD의 v와 k+1 조건을 만족하는 반공모 코드의 후보성 코드를 코드북(Codebook)에 구축하고 ${\lambda}+1$ 조건을 만족하는 행렬(이하, Rhee행렬이라 함.)을 생성한다. 실험을 통하여 콘텐츠의 특징점 기반으로 생성된 Rhee행렬의 코드벡터는 v비트의 유의수준 ($1-{\alpha}$)에서 신뢰구간에 k가 존재하며, Rhee행렬의 각 행과 행, 열과 열 사이의 유클리디안 거리가 BIBD 기반의 보수행렬과 그래프 기반의 보수행렬과 같은 k값이 산출되었다. 더욱이 Rhee행렬의 첫 행과 첫 열은 생성과정에서 초기 점화벡터로 콘텐츠 포렌식 마크 정보가 되며, 이와 관계가 있는 나머지 코드벡터들과의 관계성이 코드북에 기록되어 있기 때문에, 공모된 코드를 추적할 때 원 핑거프린팅 코드의 상관관계 계수를 구할 필요 없이 코드북의 탐색으로 공모자를 추적이 용이하다. 따라서 본 논문에서 생성된 Rhee행렬은 수리적으로 생성된 BIBD 기반의 행렬보다 ACC로서 강인성과 충실도가 우수하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.