A CORRECTION TO A PAPER ON ROMAN k-DOMINATION IN GRAPHS

Doost Ali Mojdef* and Seyed Mehdi Hosseini Moghaddam

Abstract

Let $G=(V, E)$ be a graph and k be a positive integer. A k dominating set of G is a subset $S \subseteq V$ such that each vertex in $V \backslash S$ has at least k neighbors in S. A Roman k-dominating function on G is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$. In the paper titled "Roman k-domination in graphs" (J. Korean Math. Soc. 46 (2009), no. 6, 1309-1318) K. Kammerling and L. Volkmann showed that for any graph G with n vertices, $\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \geq \min \{2 n, 4 k+1\}$, and the equality holds if and only if $n \leq 2 k$ or $k \geq 2$ and $n=2 k+1$ or $k=1$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$. In this paper we find a counterexample of Kammerling and Volkmann's result and then give a correction to the result.

1. Introduction

Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. A k-dominating set of G is a subset $S \subseteq V$ such that every vertex in $V \backslash S$ has at least k neighbors in S. The k-domination number $\gamma_{k}(G)$ of G is the minimum cardinality among the k-dominating sets of G. A 1-domination number $\gamma_{1}(G)$ is identified with the usual domination number $\gamma(G)$ (see $[1,3,5]$). A Roman k-dominating function on a graph G is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$. The weight of a Roman k-dominating function f is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of a Roman k-dominating function on a graph G is said to be the Roman k-domination number $\gamma_{k R}(G)$ of G. A Roman k-dominating function on a graph G of minimum weight is called a $\gamma_{k R}$-function of G. A Roman 1-domination number $\gamma_{1 R}(G)$ of a graph G is identified with the usual Roman domination number $\gamma_{R}(G)$ (see [2, 4]). The

[^0]order of a graph $G=(V, E)$ is the cardinality of V denoted by $|V|$ or $n(G)$ and the induced subgraph of G generated by subset $U \subseteq V$ is denoted by $G[U]$.

In 2009, K. Kammerling and L. Volkmann [2] studied Roman k-domination number of graphs and they showed the following.

Theorem 1 ([2], Theorem 2.8). If G is a graph of order n, then

$$
\begin{equation*}
\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \geq \min \{2 n, 4 k+1\} \tag{1}
\end{equation*}
$$

Furthermore the equality holds in (1) if and only if $n \leq 2 k$ or $k \geq 2$ and $n=2 k+1$ or $k=1$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$.

In this paper, we find a counterexample of the equality part of the above result and then give a correction to this result.

2. Main results

In this section we improve Theorem 1. The following results from [2] are useful.

Theorem 2 ([2], Proposition 2.6). If G is a graph of order n, then $\gamma_{k R}(G) \geq$ $\min \left\{n, \gamma_{k}(G)+k\right\}$.

Theorem 3 ([2], Proposition 2.7). Let G be a graph of order n.
(i) If $n \leq 2 k$, then $\gamma_{k R}(G)=n$.
(ii) If $n \geq 2 k+1$, then $\gamma_{k R}(G) \geq 2 k$.
(iii) If $n \geq 2 k+1$ and $\gamma_{k}(G)=k$, then $\gamma_{k R}(G)=\gamma_{k}(G)+k=2 k$.

The following has a straightforward proof, so its proof is left to the reader.
Observation 4. Let G be a graph with t component $H_{1}, H_{2}, \ldots, H_{t}$. Then

$$
\gamma_{k R}(G)=\sum_{i=1}^{t} \gamma_{k R}\left(H_{i}\right)
$$

First we present a counterexample.
A counterexample to Theorem 1. Let k be a positive integer $k \geq 2$, and let G be a graph such that $V(G)=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{2 k}\right\}, E(G)=\left\{a_{0} a_{i} \mid 1 \leq\right.$ $i \leq k\} \cup\left\{a_{2 i-1} a_{2 i} \mid 1 \leq i \leq k\right\}$ (see Figure 1 for an illustration).

It is easy to see that $\gamma_{k R}(G) \leq 2 k+1$ and $\gamma_{k R}(\bar{G}) \leq 2 k+1$, since the function defined by $f(v)=1$ for all v is a Roman k-dominating function on both G and \bar{G}. We will show that $\gamma_{k}(G)>k$. Suppose that there exists a k-dominating set D of G such that $|D|=k$. Then any vertex in D is adjacent to any vertex in $V(G) \backslash D$. Since $|V(G)|=2 k+1$ and $|D|=k, G$ has k vertices whose degrees are at least $k+1$. However, the vertex a_{0} is the only one vertex which has degree at least $k+1$, a contradiction. Therefore, $\gamma_{k}(G)>k$ and so $\gamma_{k R}(G) \geq 2 k+1$ by Theorem 2 . We can conclude that $\gamma_{k R}(G)=2 k+1$.

Now consider the complement \bar{G} of G. Then \bar{G} is the disjoint union of an isolated vertex a_{0} and the complete k-partite graph with partite sets of equal

G
Figure 1.
size 2, and call those two connected components H_{1} and H_{2}, respectively. By (i) of Theorem 3, $\gamma_{k R}\left(H_{1}\right)=1$ and $\gamma_{k R}\left(H_{2}\right)=2 k$. By Observation 4, $\gamma_{k R}(\bar{G})=\gamma_{k R}\left(H_{1}\right)+\gamma_{k R}\left(H_{2}\right)$, and therefore $\gamma_{k R}(\bar{G})=2 k+1$.

As we shown that $\gamma_{k R}(G)=\gamma_{k R}(\bar{G})=2 k+1$, we obtain that

$$
\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=4 k+2>\min \{2|V(G)|, 4 k+1\}=4 k+1,
$$

which violates the equality part of Theorem 1.
Now we give a correction of Theorem 1. If $f: V \rightarrow\{0,1,2\}$ is a Roman k-dominating function on a graph G, then $\left\{V_{0}, V_{1}, V_{2}\right\}$ is a partition of V where for $i=0,1,2, V_{i}=\{v \in V(G) \mid f(v)=i\}$. In the rest of the paper, we denote the function f by $\left(V_{0}, V_{1}, V_{2}\right)$ for simplicity.
Theorem 5. If G is a graph of order n, then $\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \geq \min \{2 n, 4 k+$ $1\}$ and the equality holds if and only if one of the following holds:
(i) $n \leq 2 k$;
(ii) $n=2 k+1$, and either $\gamma_{k}(G)=k$ or $\gamma_{k}(\bar{G})=k$;
(iii) $k=1, n \geq 4$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$.

Proof. The proof of inequality part is identified with the correspondence proof of Theorem 1 ([2] Theorem 2.8).

If (i) holds, then $\gamma_{k R}(G)=n=\gamma_{k R}(\bar{G})$ and $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=2 n$ and therefore $2 n=\min \{2 n, 4 k+1\}$.

Suppose that (ii) holds. Without loss of generality, we assume that $\gamma_{k}(G)=$ k. By (iii) of Theorem $2, \gamma_{k R}(G)=2 k$. Since $f\left(\emptyset, V(\bar{G}), \emptyset\right.$) is a $\gamma_{k R}$-function of $\bar{G}, \gamma_{k R}(\bar{G}) \leq n=2 k+1$. Therefore $\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \leq 4 k+1$. From the inequality part and the fact that $\min \{2 n, 4 k+1\}=4 k+1$, it holds that $\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \geq 4 k+1$. Thus $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=4 k+1$.

Let $k=1, n \geq 4$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$. We can assume that G has a vertex of degree $n-1$. Therefore there exists a vertex in G that dominates G and hence $\gamma_{k R}(G)=2$. The vertex of degree $n-1$ is an isolated vertex in \bar{G}. Thus the isolated vertex and the vertex of degree $n-2$ in \bar{G} dominate \bar{G}. So $\gamma_{k R}(\bar{G})=2+1=3$ and $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=\gamma_{R}(G)+\gamma_{R}(\bar{G})=2+3=5=\min \{2 n, 4 k+1\}$.

Conversely, let $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=\min \{2 n, 4 k+1\}$. If $n \leq 2 k$, then (i) immediately follows. Suppose that $n \geq 2 k+1$. Then $\min \{2 n, 4 k+1\}=$ $4 k+1$. By (ii) of Theorem $2, \gamma_{k R}(G) \geq 2 k$ and $\gamma_{k R}(\bar{G}) \geq 2 k$. Without loss of generality, we may assume that $\gamma_{k R}(G)=2 k$ and $\gamma_{k R}(\bar{G})=2 k+1$. Since $\gamma_{k R}(G)=2 k$, it follows that there exists a $\gamma_{k R}$-function $f\left(V_{0}, V_{1}, V_{2}\right)$ on G such that $\left|V_{0}\right|=n-k, V_{1}=\emptyset,\left|V_{2}\right|=k$, and V_{2} is a k-dominating set of G. Note that $\gamma_{k}(G)=k$.

Since any vertex of V_{0} and any vertex of V_{2} are adjacent in G and $V_{1}=\emptyset, \bar{G}$ is the union of $\bar{G}\left[V_{0}\right]$ and $\bar{G}\left[V_{2}\right]$. Therefore, by Observation 4,

$$
\gamma_{k R}(\bar{G})=\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)+\gamma_{k R}\left(\bar{G}\left[V_{2}\right]\right) .
$$

Since $\gamma_{k R}\left(\bar{G}\left[V_{2}\right]\right)=k$ by (i) of Theorem 2 and $\gamma_{k R}(\bar{G})=2 k+1$ by the assumption, it follows that $\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)=k+1$.

On the other hand, since $\bar{G}\left[V_{0}\right]$ has $n-k$ vertices, by (i) and (ii) of Theorem 2 , one of the following holds:
(a) $n-k \leq 2 k$ and $\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)=n-k$;
(b) $n-k \geq 2 k+1$ and $\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right) \geq 2 k$.

Suppose that (a) holds. Then $k+1=n-k$ and so $n=2 k+1$. Since we already have $\gamma_{k}(G)=k$, (ii) immediately follows. Suppose that (b) holds. Then $k+1 \geq 2 k$ and so $k=1$. In addition, $n-k \geq 2 k+1$ implies $n \geq 4$. Since we already showed that any vertex in V_{2} has degree $n-k, G$ has a vertex of degree $n-1$. Since $k=1, \gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)=k+1=2 k$, which implies that $\bar{G}\left[V_{0}\right]$ has a k-dominating set of size k. Then $\bar{G}\left[V_{0}\right]$ has a vertex which is adjacent to the other vertices of $\bar{G}\left[V_{0}\right]$. Since $\left|V_{0}\right|=n-k=n-1$, we can conclude that \bar{G} has a vertex of degree $n-2$. Thus (iii) holds.

Acknowledgements. The authors would like to thank the referee for his/her very helpful comments and valuable suggestions.

References

[1] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[2] K. Kammerling and L. Volkmann, Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009), no. 6, 1309-1318.
[3] C. S. Liao and G. J. Chang, Algorithmic aspect of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002), no. 3, 415-420.
[4] C. S. ReVelle and K. E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594.
[5] W. Shang, F. Yao, P. Wan, and X. Hu, On minimum m-connected k-dominating set problem in unit disc graphs, J. Comb. Optim. 16 (2008), no. 2, 99-106.

Doost Ali Mojdeh
Department of Mathematics
University of Tafresh
Tafresh, IRI
AND
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
Tehran, IRI, P.O. Box 19395-5746
E-mail address: damojdeh@ipm.ir
Seyed Mehdi Hosseini Moghaddam
Department of Mathematics
University of Tafresh
Tafresh, IRI
E-mail address: smehdi19@gmail.com

[^0]: Received October 22, 2011; Revised April 7, 2012.
 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. dominating set, Roman k-dominating function, correction.
 ${ }^{*}$ This research was in part supported by a grant from IPM (No. 90050045).

