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A CORRECTION TO A PAPER ON ROMAN k-DOMINATION

IN GRAPHS

Doost Ali Mojdeh∗ and Seyed Mehdi Hosseini Moghaddam

Abstract. Let G = (V, E) be a graph and k be a positive integer. A k-
dominating set of G is a subset S ⊆ V such that each vertex in V \S has at
least k neighbors in S. A Roman k-dominating function on G is a function
f : V → {0, 1, 2} such that every vertex v with f(v) = 0 is adjacent to
at least k vertices v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. In the
paper titled “Roman k-domination in graphs” (J. Korean Math. Soc. 46

(2009), no. 6, 1309–1318) K. Kammerling and L. Volkmann showed that

for any graph G with n vertices, γkR(G) + γkR(G) ≥ min {2n, 4k + 1},
and the equality holds if and only if n ≤ 2k or k ≥ 2 and n = 2k + 1
or k = 1 and G or G has a vertex of degree n − 1 and its complement
has a vertex of degree n − 2. In this paper we find a counterexample
of Kammerling and Volkmann’s result and then give a correction to the
result.

1. Introduction

LetG = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G).
A k-dominating set of G is a subset S ⊆ V such that every vertex in V \S has at
least k neighbors in S. The k-domination number γk(G) of G is the minimum
cardinality among the k-dominating sets of G. A 1-domination number γ1(G)
is identified with the usual domination number γ(G) (see [1, 3, 5]). A Roman

k-dominating function on a graph G is a function f : V → {0, 1, 2} such that
every vertex v with f(v) = 0 is adjacent to at least k vertices v1, v2, . . . , vk with
f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-dominating function f is
the value f(V ) =

∑
u∈V

f(u). The minimum weight of a Roman k-dominating
function on a graph G is said to be the Roman k-domination number γkR(G) of
G. A Roman k-dominating function on a graph G of minimum weight is called
a γkR-function of G. A Roman 1-domination number γ1R(G) of a graph G is
identified with the usual Roman domination number γR(G) (see [2, 4]). The
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order of a graph G = (V,E) is the cardinality of V denoted by |V | or n(G) and
the induced subgraph of G generated by subset U ⊆ V is denoted by G[U ].

In 2009, K. Kammerling and L. Volkmann [2] studied Roman k-domination
number of graphs and they showed the following.

Theorem 1 ([2], Theorem 2.8). If G is a graph of order n, then

(1) γkR(G) + γkR(G) ≥ min{2n, 4k + 1}.

Furthermore the equality holds in (1) if and only if n ≤ 2k or k ≥ 2 and

n = 2k+1 or k = 1 and G or G has a vertex of degree n−1 and its complement

has a vertex of degree n− 2.

In this paper, we find a counterexample of the equality part of the above
result and then give a correction to this result.

2. Main results

In this section we improve Theorem 1. The following results from [2] are
useful.

Theorem 2 ([2], Proposition 2.6). If G is a graph of order n, then γkR(G) ≥
min{n, γk(G) + k}.

Theorem 3 ([2], Proposition 2.7). Let G be a graph of order n.

(i) If n ≤ 2k, then γkR(G) = n.

(ii) If n ≥ 2k + 1, then γkR(G) ≥ 2k.
(iii) If n ≥ 2k + 1 and γk(G) = k, then γkR(G) = γk(G) + k = 2k.

The following has a straightforward proof, so its proof is left to the reader.

Observation 4. Let G be a graph with t component H1, H2, . . . , Ht. Then

γkR(G) =

t∑

i=1

γkR(Hi).

First we present a counterexample.

A counterexample to Theorem 1. Let k be a positive integer k ≥ 2, and
let G be a graph such that V (G) = {a0, a1, a2, . . . , a2k}, E(G) = {a0ai | 1 ≤
i ≤ k} ∪ {a2i−1a2i | 1 ≤ i ≤ k} (see Figure 1 for an illustration).

It is easy to see that γkR(G) ≤ 2k + 1 and γkR(G) ≤ 2k + 1, since the
function defined by f(v) = 1 for all v is a Roman k-dominating function on
both G and G. We will show that γk(G) > k. Suppose that there exists a
k-dominating set D of G such that |D| = k. Then any vertex in D is adjacent
to any vertex in V (G)\D. Since |V (G)| = 2k+1 and |D| = k, G has k vertices
whose degrees are at least k+1. However, the vertex a0 is the only one vertex
which has degree at least k + 1, a contradiction. Therefore, γk(G) > k and so
γkR(G) ≥ 2k + 1 by Theorem 2. We can conclude that γkR(G) = 2k + 1.

Now consider the complement G of G. Then G is the disjoint union of an
isolated vertex a0 and the complete k-partite graph with partite sets of equal



A CORRECTION TO A PAPER ON ROMAN k-DOMINATION IN GRAPHS 471

u

u

u

u

u

u u

u

u
q
q
q

a1 a2

a3

a4

a2k−3

a2k−2

a2k−1

a2k

a0

G

Figure 1.

size 2, and call those two connected components H1 and H2, respectively.
By (i) of Theorem 3, γkR(H1) = 1 and γkR(H2) = 2k. By Observation 4,
γkR(G) = γkR(H1) + γkR(H2), and therefore γkR(G) = 2k + 1.

As we shown that γkR(G) = γkR(G) = 2k + 1, we obtain that

γkR(G) + γkR(G) = 4k + 2 > min{2|V (G)|, 4k + 1} = 4k + 1,

which violates the equality part of Theorem 1.

Now we give a correction of Theorem 1. If f : V → {0, 1, 2} is a Roman
k-dominating function on a graph G, then {V0, V1, V2} is a partition of V where
for i = 0, 1, 2, Vi = {v ∈ V (G) | f(v) = i}. In the rest of the paper, we denote
the function f by (V0, V1, V2) for simplicity.

Theorem 5. If G is a graph of order n, then γkR(G)+γkR(G) ≥ min{2n, 4k+
1} and the equality holds if and only if one of the following holds:

(i) n ≤ 2k;
(ii) n = 2k + 1, and either γk(G) = k or γk(G) = k;
(iii) k = 1, n ≥ 4 and G or G has a vertex of degree n−1 and its complement

has a vertex of degree n− 2.

Proof. The proof of inequality part is identified with the correspondence proof
of Theorem 1 ([2] Theorem 2.8).

If (i) holds, then γkR(G) = n = γkR(G) and γkR(G) + γkR(G) = 2n and
therefore 2n = min{2n, 4k + 1}.

Suppose that (ii) holds. Without loss of generality, we assume that γk(G) =
k. By (iii) of Theorem 2, γkR(G) = 2k. Since f(∅, V (G), ∅) is a γkR-function
of G, γkR(G) ≤ n = 2k + 1. Therefore γkR(G) + γkR(G) ≤ 4k + 1. From
the inequality part and the fact that min{2n, 4k + 1} = 4k + 1, it holds that
γkR(G) + γkR(G) ≥ 4k + 1. Thus γkR(G) + γkR(G) = 4k + 1.
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Let k = 1, n ≥ 4 and G or G has a vertex of degree n−1 and its complement
has a vertex of degree n−2. We can assume that G has a vertex of degree n−1.
Therefore there exists a vertex in G that dominates G and hence γkR(G) = 2.
The vertex of degree n− 1 is an isolated vertex in G. Thus the isolated vertex
and the vertex of degree n− 2 in G dominate G. So γkR(G) = 2 + 1 = 3 and
γkR(G) + γkR(G) = γR(G) + γR(G) = 2 + 3 = 5 = min{2n, 4k+ 1}.

Conversely, let γkR(G) + γkR(G) = min{2n, 4k + 1}. If n ≤ 2k, then (i)
immediately follows. Suppose that n ≥ 2k + 1. Then min{2n, 4k + 1} =
4k + 1. By (ii) of Theorem 2, γkR(G) ≥ 2k and γkR(G) ≥ 2k. Without loss
of generality, we may assume that γkR(G) = 2k and γkR(G) = 2k + 1. Since
γkR(G) = 2k, it follows that there exists a γkR-function f(V0, V1, V2) on G such
that |V0| = n − k, V1 = ∅, |V2| = k, and V2 is a k-dominating set of G. Note
that γk(G) = k.

Since any vertex of V0 and any vertex of V2 are adjacent in G and V1 = ∅, G
is the union of G[V0] and G[V2]. Therefore, by Observation 4,

γkR(G) = γkR(G[V0]) + γkR(G[V2]).

Since γkR(G[V2]) = k by (i) of Theorem 2 and γkR(G) = 2k+1 by the assump-
tion, it follows that γkR(G[V0]) = k + 1.

On the other hand, since G[V0] has n−k vertices, by (i) and (ii) of Theorem
2, one of the following holds:

(a) n− k ≤ 2k and γkR(G[V0]) = n− k;
(b) n− k ≥ 2k + 1 and γkR(G[V0]) ≥ 2k.

Suppose that (a) holds. Then k + 1 = n − k and so n = 2k + 1. Since we
already have γk(G) = k, (ii) immediately follows. Suppose that (b) holds.
Then k+1 ≥ 2k and so k = 1. In addition, n−k ≥ 2k+1 implies n ≥ 4. Since
we already showed that any vertex in V2 has degree n − k, G has a vertex of
degree n− 1. Since k = 1, γkR(G[V0]) = k + 1 = 2k, which implies that G[V0]
has a k-dominating set of size k. Then G[V0] has a vertex which is adjacent to
the other vertices of G[V0]. Since |V0| = n − k = n− 1, we can conclude that
G has a vertex of degree n− 2. Thus (iii) holds. �
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