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HOMOGENEOUS MULTILINEAR FUNCTIONS ON

HYPERGRAPH CLIQUES

Xiaojun Lu, Qingsong Tang, Xiangde Zhang, and Cheng Zhao

Abstract. Motzkin and Straus established a close connection between
the maximum clique problem and a solution (namely graph-Lagrangian)
to the maximum value of a class of homogeneous quadratic multilinear
functions over the standard simplex of the Euclidean space in 1965. This
connection and its extensions were successfully employed in optimization
to provide heuristics for the maximum clique problem in graphs. It is
useful in practice if similar results hold for hypergraphs. In this paper,
we develop a homogeneous multilinear function based on the structure

of hypergraphs and their complement hypergraphs. Its maximum value
generalizes the graph-Lagrangian. Specifically, we establish a connection
between the clique number and the generalized graph-Lagrangian of 3-
uniform graphs, which supports the conjecture posed in this paper.

1. Introduction

In 1941, Turán [24] provided an answer to the following question: What
is the maximum number of edges in a graph with n vertices not containing a
complete subgraph of order k, for a given k? This is the well-known Turán
theorem. Later, in another classical paper, Motzkin and Straus [12] provided
a new proof of Turán theorem based on the continuous characterization of the
clique number of a graph using graph-Lagrangians of graphs.

The Motzkin-Straus result basically says that the graph-Lagrangian of a
graph which is the maximum of a homogeneous quadratic multilinear function
(determined by the graph) over the standard simplex of the Euclidean plane
is connected to the clique number of this graph (the precise statement is given
in Theorem 2.2). This result provides a solution to the optimization problem
for a class of homogeneous quadratic multilinear functions over the standard
simplex of an Euclidean plane. The Motzkin-Straus result and its extension
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were successfully employed in optimization to provide heuristics for the maxi-
mum clique problem [1,2,6,9]. It has been also generalized to vertex-weighted
graphs [9] and edge-weighted graphs with applications to pattern recognition in
image analysis [1,2,5,6,9,14,15]. In addition, the graph-Lagrangian of a hyper-
graph has been a useful tool in hypergraph extremal problems. For example,
Sidorenko [19] and Frankl-Füredi [7] applied graph-Lagrangians of hypergraphs
in finding Turán densities of hypergraphs. Frankl and Rödl [8] applied it in dis-
proving Erdös long standing jumping constant conjecture. More applications
of graph-Lagrangians can be found in [4], [11], and [20].

An attempt to generalize the Motzkin-Straus theorem to hypergraphs is due
to Sós and Straus [20]. Recently, in [3,4] Rota Bulò and Pelillo generalized the
Motzkin and Straus’ result to r-graphs in some way using a continuous char-
acterization of maximal cliques other than graph-Lagrangians of hypergraphs.
The obvious generalization of Motzkin and Straus’ result to hypergraphs is
false. In fact, there are many examples of hypergraphs that do not achieve
their graph-Lagrangian on any proper subhypergraph.

In this paper, we develop a type of homogeneous multilinear function based
on the structure of hypergraphs and their complementary hypergraphs. Its
maximum value (called generalized graph-Lagranian) generalizes the graph-
Lagrangian. The main results provide solutions to the polynomial programming
over the standard simplex of the Euclidean space. Specifically, we establish a
connection between the clique number and the generalized graph-Lagrangians
for 3-uniform graphs. The results presented in this paper also provide substan-
tial evidence for five conjectures posed in this paper and extend some known
results in the literature [11, 18]. If the proposed five Conjectures in this pa-
per hold, then they can be used to provide heuristics for the maximum clique
problem.

The rest of the paper is organized as follows. In Section 2, we state a few
definitions, related problems, and some conjectures. In Section 3, we describe
some preliminary results. Our main results are given in Section 4. Concluding
remarks are given in Section 5.

2. Definitions and problems

A hypergraph H = (V,E) consists of a vertex set V and an edge set E,
where every edge in E is a subset of V . If necessary, we use E(H) and V (H)
to denote the edge set and vertex set of H respectively. If all edges have
the same cardinality, then H is an uniform hypergraph, otherwise H is an
non-uniform hypergraph. If all the edges have cardinality r, then H is an r-
uniform hypergraph(or an r-graph). A 2-uniform graph is a graph. An edge
{i1, i2, . . . , ir} in a hypergraph is simply written as i1i2 · · · ir throughout the
paper.

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. For a finite set

V and a positive integer i, let
(

V
i

)

denote the family of all i-subsets of V . The
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complete hypergraph Kr
t is a hypergraph on t vertices with edge set

(

[t]
i

)

. A
complete r-graph on t vertices is also called a clique with order t. A clique is
said to be maximum if it has maximum cardinality. The clique number of an
r-graph H is defined as the cardinality of the maximum clique of H .

For an r-graph H = (V,E) and i ∈ V , let Ei := {A ∈ V (r−1) : A∪{i} ∈ E}.
Let H or Hc denote the complement hypergraph of H . For a pair of vertices
i, j ∈ V , let Eij := {B ∈ V (r−2) : B∪{i, j} ∈ E}. Let Ec

i := {A ∈ V (r−1) : A∪
{i} ∈ V (r)\E}, Ec

ij := {B ∈ V (r−2) : B∪{i, j} ∈ V (r)\E}, and Ei\j := Ei∩Ec
j .

Definition. For an r-uniform graph H with the vertex set [n], edge set E(H),
and a vector ~x = (x1, . . . , xn) ∈ R

n, we associate a homogeneous polynomial
in n variables, denoted by λ(H,~x) as follows:

λ(H,~x) :=
∑

i1i2···ir∈E(H)

xi1xi2 · · ·xir .

Let S := {~x = (x1, x2, . . . , xn) :
∑n

i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}. Let
λ(H) represent the maximum of the above homogeneous multilinear polynomial
of degree r over the standard simplex S. Precisely,

λ(H) := max{λ(H,~x) : ~x ∈ S}.
The value xi is called the weight of the vertex i. A vector ~x = (x1, . . . , xn) ∈

R
n is called a feasible weighting for H if ~x ∈ S. A vector ~y ∈ S is called an

optimal weighting for H if λ(H,~y) = λ(H).

Remark 2.1. Since λ(H) is the maximum of a polynomial function in n variables
x1, x2, . . . , xn under the constraint

∑n
i=1 xi = 1 and the theory of Lagrange

multipliers is often used in evaluating λ(H), λ(H) was called the Lagrangian
of H in several papers [7, 8, 11, 13]. In order to emphasize λ(H) is a concept
related to graph theory, we call it the graph-Lagrangian of H following the
suggestion of Franco Giannessi thoughout this paper.

In [12], Motzkin and Straus provided the following simple expression for the
graph-Lagrangian of a 2-graph.

Theorem 2.2 ([12]). If H is a 2-graph with n vertices in which a maximum

clique has order t then λ(H) = λ(K2
t ) = 1

2 (1 − 1
t ). Furthermore, the vector

~x = (x1, x2, . . . , xn) given by xi :=
1
t if i is a vertex in a fixed maximum clique

and xi = 0 otherwise is an optimal weighting.

Theorem 2.2 provides solutions to the optimization problem of these types
of homogeneous quadratic functions over the standard simplex of an Euclidean
plane.

In this paper, we consider a more general question.

Problem 1. Let β ≥ 0 be a constant. For an r-graph H with and a vector
~x = (x1, . . . , xn) ∈ R

n, define

Lβ(H,~x) := λ(H,~x)− βλ(H,~x).
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Let S = {~x = (x1, x2, . . . , xn) ∈ R
n :
∑n

i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}.
Let Lβ(H) represent the maximum of the above homogeneous multilinear poly-
nomial of degree r over the standard simplex S. Precisely,

Lβ(H) := max{Lβ(H,~x) : ~x ∈ S}.(1)

We call Lβ(H) the generalized graph-Lagrangian of HT
n . The value xi is called

the weight of the vertex i. A vector ~x = (x1, x2, . . . , xn) ∈ R
n is called a feasible

weighting for H if and only if ~x ∈ S. A vector ~y ∈ S is called an optimal
weighting for H to optimization problem (1) if and only if Lβ(H,~y) = Lβ(H).

Fact 2.3. Let H1, H2 be hypergraphs and H1 ⊆ H2. Then Lβ(H1) ≤ Lβ(H2)
for β ≥ 0.

Fact 2.4. Let 0 ≤ β2 < β1. Let H be a hypergraph, then Lβ1
(H) ≤ Lβ2

(H) ≤
λ′(H) for β ≥ 0.

Note that, for an r-uniform hypergraph H if β = 0, then Lβ(H) = λ(H).

For distinct A,B ∈ N
(r) we say that A is less than B in the colex ordering

if max(A△B) ∈ B, where A△B := (A \ B) ∪ (B \ A). For example we have
246 < 156 in N

(3) since max({2, 4, 6}△{1, 5, 6}) ∈ {1, 5, 6}. In colex ordering,
123 < 124 < 134 < 234 < 125 < 135 < 235 < 145 < 245 < 345 < 126 < 136 <
236 < 146 < 246 < 346 < 156 < 256 < 356 < 456 < 127 < · · · . Note that the
first

(

t
r

)

r-tuples in the colex ordering of N(r) are the edges of [t](r).
Let Cr,m denote the r-graph with m edges formed by taking the first m sets

in the colex ordering of N(r).

Conjecture 2.5. For any r-graph H with m edges, we have Lβ(H) ≤ Lβ(Cr,m)
for β ≥ 0.

Remark 2.6. Note that, if we set β = 0, Conjecture 2.5 is the conjecture of
Frankl and Füredi given in [7] and [11] as follows.

Conjecture 2.7 ([7]). The r-graph H with m edges formed by taking the first

m sets in the colex ordering of N
(r) has the largest graph-Lagrangian of all

r-graphs with m edges. That is, λ(H) ≤ λ(Cr,m).

Conjecture 2.7 is true when r = 2 by Theorem 2.2. It is obvious that both
Theorem 2.2 holds in terms of Lβ(H) when H is a 2-graph. For general r-graph
Talbot in [11] proved the following lemma.

Lemma 2.8 ([11]). For any integers m, t, and r satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

, we have λ(Cr,m) = λ([t](r)) = (t−1)···(t−r+1)
tr−1 .

We may also compute Lβ(Cr,m) for various values β ≥ 0. As an example,

let us consider Lβ(Cr,m) for any integers m, t, and r satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

.

Claim 2.9. Let m, t, and r be positive integers satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

. Then Lβ(Cr,m) = Lβ([t]
(r)) = λ([t](r)) for β ≥ 0.
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Proof. By Lemma 2.8 and Fact 2.4, we have Lβ(Cr,m) ≤ λ([t](r)). On the other

side, since [t](r) ⊆ Cr,m. Clearly, Lβ([t]
(r)) = λ([t](r)). Hence Lβ(Cr,m) ≥

Lβ([t]
(r)) = λ([t](r)) by Fact 2.3. Thus Lβ(Cr,m) = λ([t](r)) for

(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

and β ≥ 0. �

In order to explore the relationship between the generalized graph-Lagrangian
of a hypergraph and the order of its maximum cliques for hypergraphs when
the number of edges is in certain ranges, we propose the following conjectures.

Conjecture 2.10. Let m and t be positive integers satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

. Let H be an r-graph with m edges and contain a clique of order t.

Then Lβ(H) = Lβ([t]
(r)) = λ([t](r)) for β ≥ 0.

Conjecture 2.11. Let m and t be positive integers satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

. Let H be an r-graph with m edges and contain no clique of order

t. Then Lβ(H) < Lβ([t]
(r)) = λ([t](r)) for β ≥ 0.

Conjecture 2.12. Let H be an r-graph not containing a clique of order t.
Then there exists β0 ≥ 0 such that Lβ(H) < Lβ([t]

(r)) = λ([t](r)) for β ≥ β0.

Conjecture 2.13. Let H be an r-graph containing a maximum clique of order

t. Then there exists β0 ≥ 0 such that Lβ(H) = Lβ([t]
(r)) = λ([t](r)) for β ≥ β0.

Remark 2.14. Let us give an intuitive explanation for Conjectures 2.12 and
2.13. If the maximum clique of H is less than t.

Note that, if Conjectures 2.11, 2.12, and 2.13 hold, then they can be used
to provide heuristics for the maximum clique problem.

Remark 2.15. In [18], both Conjectures 2.10 and 2.11 were posed in the case
when β = 0. For an r-graph H containing a clique of order t, since λ([t](r)) ≤
Lβ(H) ≤ λ(H), it is easy to see that Conjectures 2.10 and 2.11 in the case
when β = 0 implies Conjectures 2.10 and 2.11 for all other cases when β > 0,
respectively. Also, based on Facts 2.3, 2.4, and Claim 2.9, if both Conjectures
2.10 and 2.11 hold in the case when β = 0, then Conjecture 2.5 is true for any
r-graph H with m edges satisfying

(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

for all cases when
β ≥ 0.

Thus, Conjecture 2.10 holds for r = 3 by Remark 2.15 and Theorem 2.16.

Theorem 2.16 ([18]). Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

. Let H be a 3-graph with m edges and contain a clique of order t.

Then λ(H) = λ([t](3)).

The following theorem is proved in [17].

Theorem 2.17 ([17]). Let m and t be positive integers satisfying
(

t
r

)

≤ m ≤
(

t
r

)

+
(

t−1
r−1

)

− (2r−3 − 1)(
(

t−1
r−2

)

− 1). Let H be an r-graph on vertex set [t+ 1]

with m edges and contain a clique of order t. Then λ(H) = λ([t](r)).
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Hence Remark 2.15 implies that we have Lβ(H) = Lβ([t]
(r)) for all β ≥ 0

under the condition of Theorem 2.17.
Note that the upper bound

(

t
r

)

+
(

t−1
r−1

)

in Conjecture 2.10 is the best possible,

since Lβ(Cr,m) = λ([t](r)) does not always hold for
(

t
r

)

+
(

t−1
r−1

)

< m ≤
(

t+1
r

)

−
1. For example, if m =

(

t
r

)

+
(

t−1
r−1

)

+ 1, then Lβ(Cr,m) > λ([t](r)) for β <

(t−1

r−1)−4(t−2

r−1)−4(t−2

r−2)+1

(t−2

r−2)−1
. To see this, take ~x = (x1, . . . , xt+1) ∈ S, where x1 =

x2 = · · · = xt−1 = 1
t and xt = xt+1 = 1

2t , then Lβ(Cr,m) ≥ Lβ(Cr,m, ~x) >

λ([t](r)) for β <
(t−1

r−1)−4(t−2

r−1)−4(t−2

r−2)+1

(t−2

r−2)−1
.

The main goal of this paper is to explore Conjecture 2.5 for different r, β and
certain ranges of m. We also explore the connection between the clique number
and the generalized graph-Lagrangian. Substantial evidence is obtained for
Conjectures 2.10-2.13 as well.

3. Some preliminaries

We will impose an additional condition on any optimal weighting ~x =
(x1, x2, . . . , xn) for a hypergraph H to Problem 1:

|{i : xi > 0}| is minimal, i.e., if ~y is a feasible weighting for H satisfying
|{i : yi > 0}| < |{i : xi > 0}|, then Lβ(H,~y) < Lβ(H,~x).

Lemma 3.1. Let H = (V,E) be an r-graph and ~x = (x1, x2, . . . , xn) be an

optimal feasible weighting for H with k (≤ n) non-zero weights x1, x2, . . . , xk.

Then for every {i, j} ∈ [k](2), (a)
∂Lβ(H,~x)

∂xi

=
∂Lβ(H,~x)

∂xj

, (b) there is an edge in

E containing both i and j.

Proof. (a) Suppose, for a contradiction, that there exist {i, j} ∈ [k](2) such

that
∂Lβ(H,~x)

∂xi

>
∂Lβ(H,~x)

∂xj

. We define a new feasible weighting ~y as follows. Let

0 < δ ≤ xj and yl = xl for l 6= i, j, yi = xi+ δ and yj = xj − δ, then ~y is clearly
a feasible weighting for H , and

Lβ(H,~y)− Lβ(H,~x) = δ(
∂Lβ(H,~x)

∂xi
− ∂Lβ(H,~x)

∂xj
)− δ2

∂2Lβ(H
T
n , ~x)

∂xi∂xj
.

For sufficiently small δ this is strictly positive, contradicting to
∂Lβ(H,~x)

∂xi

>
∂Lβ(H,~x)

∂xj

. Hence Lemma 3.1(a) holds.

(b) Suppose, for a contradiction, that there exist {i, j} ∈ [k](2) such that
for any e ∈ E(H), ij 6⊇ e. We define a new feasible weighting ~y for HT

n as
follows. Let yl = xl for l 6= i, j, yi = xi + xj and yj = xj − xj = 0, then ~y

is clearly a feasible weighting for HT
n . Note that

∂Lβ(H,~x)
∂xi

=
∂Lβ(H,~x)

∂xj

by (a).

And
∂2Lβ(H,~x)
∂xi∂xj

= 0 since ij 6⊇ e for any e ∈ E(H). Hence

Lβ(H,~y)− Lβ(H,~x) = xj(
∂Lβ(H,~x)

∂xi
− ∂Lβ(H

T
n , ~x)

∂xj
)− x2

j

∂2Lβ(H
T
n , ~x)

∂xi∂xj
= 0.
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So ~y is an optimal weighting for H to Problem (1) and |{i : yi > 0}| = k − 1,
contradicting the minimality of k. Hence Lemma 3.1(b) holds. �

For an r-graph H = (V,E), when the theory of Lagrange multipliers is
applied to find the optimum of Lβ(H), subject to

∑n
i=1 xi = 1, note that

Lβ(Ei, ~x) corresponds to the partial derivative of Lβ(H,~x) with respect to xi.
The following lemma gives some necessary conditions of an optimal weighting
of Lβ(H).

Lemma 3.2. Let H = (V,E) be an r-graph on the vertex set [n] and ~x =
(x1, x2, . . . , xn) be an optimal weighting for H to Problem 1 with k (≤ n) non-
zero weights x1, x2, . . . , xk. Then for every {i, j} ∈ [k](2), (a) Lβ(Ei, ~x) =
Lβ(Ej , ~x) = rLβ(H), (b) there is an edge in E containing both i and j.

Proof. (a) By Lemma 3.1(a) we have Lβ(Ei, ~x) = Lβ(Ej , ~x) for every {i, j} ∈
[k](2). Note that

x1Lβ(E1, ~x) + · · ·+ xkLβ(Ek, ~x) = rLβ(H)

since each xi1xi2 · · ·xir (i1i2 · · · ir ∈ H) and −βxj1xj2 · · ·xjr (j1j2 · · · jr /∈ H)
appears r times respectively in x1Lβ(E1, ~x)+· · ·+xkLβ(Ek, ~x). Hence Lβ(Ei, ~x)
= rLβ(H)) for 1 ≤ i ≤ k.

(b) The result is directly from Lemma 3.1(b). �

In [11], Talbot introduced the definition of a left-compressed r-uniform hy-
pergraph. It can be generalize to non-uniform hypergraphs.

Definition. An r-graphH = ([n], E) is left-compressed if and only if j1j2 · · · jr
∈ E implies i1i2 · · · ir ∈ E provided ip ≤ jp for every p, 1 ≤ p ≤ r.

An r-tuple i1i2 · · · ir is called a descendant of an r-tuple j1j2 · · · jr if is ≤ js
for each 1 ≤ s ≤ r, and i1 + i2 + · · · + ir < j1 + j2 + · · · + jr. In this case,
the r-tuple j1j2 · · · jr is called an ancestor of i1i2 · · · ir. The r-tuple i1i2 · · · ir is
called a direct descendant of j1j2 · · · jr if i1i2 · · · ir is a descendant of j1j2 · · · jr
and j1 + j2 + · · · + jr = i1 + i2 + · · · + ir + 1. We say that j1j2 · · · jr has
lower hierarchy than i1i2 · · · ir if j1j2 · · · jr is an ancestor of i1i2 · · · ir. This is
a partial order on the set of all r-tuples.

Remark 3.3. An r-graph H is left-compressed if all descendants of an edge of
H are edges of H . Equivalently, if an r-tuple is not an edge of H , then none
of its ancestors will be an edge of H .

Definition (Equivalent Definition of Left-compressed). Let H = ([n], E) be
an r-graph. For e ∈ E, and i, j ∈ [n] with i < j, define

Cij (e) =

{

(e\{j}) ∪ {i} if i /∈ e and j ∈ e,

e otherwise.

and

(2) Cij(E) = {Cij(e) : e ∈ E} ∪ {e : e, Cij (e) ∈ E}.
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We say that E (H) is left-compressed if Cij(E) = E for every 1 ≤ i < j.

Note that |Cij(E)| = |E| from the definition of Cij(E). We have the following
lemma.

Lemma 3.4. Let H = ([n], E) be an r-graph, i, j ∈ [n] with i < j and ~x =
(x1, · · · , xn) be an optimal weighting for H to Problem (1). Write Hij =
([n], Cij(E)). Then,

Lβ(H,~x) ≤ Lβ(Hij , ~x).

Proof. We can assume that xi ≥ xj when i < j since otherwise we can just
relabel the vertices of H and obtain an optimal weighting ~x = (x1, x2, . . . , xn)
satisfying xi ≥ xj when i < j. Note that

Lβ(Hij , ~x)− Lβ(H,~x) =
∑

e∈E(H),Cij(e)/∈E(H)
i/∈e,j∈e

(1 + β)Lβ(e\{j}, ~x) (xi − xj).

Hence Lβ(Hij , ~x) − Lβ(H,~x) is nonnegative in any case, since i < j implies
that xi ≥ xj . So this lemma holds. �

Remark 3.5. Let H = (V,E) be an r-graph.
(a) In Lemma 3.2, part(a) implies that

λ(Ei, ~x)− βλ(Ec
i , ~x) = λ(Ej , ~x)− βλ(Ec

j , ~x) = rLβ(H),

i.e.,

λ(Ei\j , ~x) + xjλ(Eij , ~x)− βλ(Ec
i\j , ~x)− βxjλ(E

c
ij , ~x)

= λ(Ej\i, ~x) + xiλ(Eij , ~x)− βλ(Ec
j\i, ~x)− βxiλ(E

c
ij , ~x)

= rLβ(H).

In particular, if H is left-compressed, then

λ(Ei\j , ~x) + xjλ(Eij , ~x)− βxjλ(E
c
ij , ~x)

= xiλ(Eij , ~x)− βλ(Ei\j , ~x)− βxiλ(E
c
ij , ~x)

= rLβ(H)

for any i, j satisfying 1 ≤ i < j ≤ k since Ej\i = ∅, Ec
i\j = ∅ and Ec

j\i = Ei\j .

Note that xiλ(Eij , ~x) − βλ(Ec
j\i, ~x) − βxiλ(E

c
ij , ~x) = rLβ(H) > 0, we have

xiλ(Eij , ~x)− βxiλ(E
c
ij , ~x) ≥ rLβ(H) > 0, i.e., λ(Eij , ~x) > βλ(Ec

ij , ~x).

(b) If H is left-compressed, then for any i, j satisfying 1 ≤ i < j ≤ k,

(3) xi − xj =
(1 + β)λ(Ei\j , ~x)

λ(Eij , ~x)− βλ(Ec
ij , ~x)

holds. If H is left-compressed and Ei\j = ∅ for i, j satisfying 1 ≤ i < j ≤ k,
then xi = xj .
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(c) By (3), ifH is left-compressed, then an optimal weighting ~x = (x1, x2, . . .,
xn) for H to Problem (1) must satisfy

(4) x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

In the rest of the paper an optimal weighting for H refers to an optimal
weighting for H to Problem (1) unless specifically stated.

4. Results for 3-uniform hypergraphs

In this section, for 3-graphs, we prove several substantial supporting results
for Conjectures 2.5 and Conjectures 2.10-2.13.

Theorem 4.1. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1. Let
β ≥ t − 1 be a constant. Then Conjecture 2.5 is true for r = 3 and this value

of m.

Theorem 4.2. Let m and t be positive integers satisfying m ≤
(

t+1
3

)

− 1. Let

β ≥ 27
(

t
2

)

− 1 be a constant. Let H be a 3-graph on vertex set [t + 1] with m
edges.

(a) If H contains a clique of order t, then Lβ(H) = Lβ([t]
(3)). Furthermore,

the vector ~x = (x1, x2, . . . , xn), given by xi := 1
t if i is a vertex in a fixed

maximum clique and xi = 0 otherwise, is an optimal weighting.

(b) If H does not contain a clique of order t, then Lβ(H) < Lβ([t]
(3)).

Theorem 4.3. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1. Let

β ≥ 27
(

t
2

)

− 1 be a constant. Let H be a 3-graph with m edges. If H contains

a clique order of t, then Lβ(H) = Lβ([t]
(3)). Furthermore, the vector ~x =

(x1, x2, . . . , xn), given by xi :=
1
t if i is a vertex in a fixed maximum clique and

xi = 0 otherwise, is an optimal weighting.

Theorem 4.4. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1. Let

β ≥ 27
(

t
2

)

− 1 be a constant. Let H be a 3-graph with m edges. If H does not

contain a clique order of t, then Lβ(H) < Lβ([t]
(3)).

Note that Theorem 4.3 and Theorem 4.4 establish a connection between the
generalized graph-Lagrangians and the maximum cliques of H for certain range
of β. In [23], we prove the following theorem for 3-uniform hypergraphs.

Theorem 4.5 ( [23]). Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

− 1
2 t. Let H be a 3-graph with m edges and H does not contain a clique

order of t. Then λ(H) < λ([t](3)).

Next, we generalize Theorem 4.5 as follows.

Theorem 4.6. Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

− 1
2⌈ t−1

1+β ⌉− 1. Let β ≥ 0 be a constant. Let H be a 3-graph with m edges.

If H does not contain a clique of order t, then Lβ(H) < Lβ([t]
(3)).
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Theorem 4.7. Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

. Let β ≥ t − 4 be a constant. Let H be a 3-graph with m edges. If H

does not contain a clique of order t, then Lβ(H) < Lβ([t]
(3)).

Combing Remark 2.15 and Theorem 4.6, we have:

Theorem 4.8. Let β ≥ 0 be a constant. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

− 1
2⌈ t−1

1+β ⌉− 1. Then Conjecture 2.5 is true for r = 3 and

this value of m.

4.1. Proof of Theorem 4.1

Proof of Theorem 4.1. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.

Let β ≥ t − 1 be a constant. Denote L
(3)
(β,m) := max{Lβ(H) : H is a 3-graph

with m edges}. Let H be a 3-graph with m edges such that Lβ(H) = L
(3)
(β,m),

i.e., H is an extremal graph. Let ~x = (x1, x2, . . . , xn) be an optimal weighting
for H and k be the number of non-zero weights in ~x. We can assume that
H is left-compressed. Otherwise if H is not left-compressed, performing a
sequence of left-compressing operations (i.e., if an edge in H has descendants
that are not in H , then replace this edge by a descendant not in H with
the lowest hierarchy. Repeat this until all descendants of an edge of H are
edges of H), we will get a left-compressed 3-graph G. By Lemma 3.4 G is
also an extremal graph. Hence we can assume that H is left-compressed and
x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xn = 0. There is an edge e containing both
k− 1 and k by Lemma 3.2(b). Recalling that H is left-compressed, so we have
1(k− 1)k ∈ E. Let b := max{i : i(k − 1)k ∈ E}. We now give three lemmas to
be proved later.

Lemma 4.9. |[k − 1](3)\E| ≤ ⌈ k−2
1+β ⌉ for β ≥ 0.

Lemma 4.10. |[k − 1](2)\Ek−1| ≤ ⌈ b
1+β ⌉ for β ≥ 0.

Lemma 4.11. |[k − 2](2)\Ek| ≤ ⌈ b
1+β ⌉ for β ≥ 0.

Assume the above lemmas are true, then we may show that k ≤ t + 1 as
follows.

Claim 4.12. Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.
Let β ≥ 0 be a constant. Let H be a 3-graph with m edges such that Lβ(H) =

L
(3)
(β,m). Let ~x = (x1, x2, . . . , xn) be an optimal weighting for H and k be the

number of non-zero weights in ~x. Then k ≤ t+ 1.

Proof of Claim 4.12. If k ≥ t+ 2, using Lemma 4.9 and Lemma 4.11, we have

m = |E| = |E ∩ [k − 1](3)|+ |[k − 2](2) ∩ Ek|+ |E(k−1)k|

≥
(

k − 1

3

)

− ⌈ k − 2

1 + β
⌉+

(

k − 2

2

)

− ⌈ b

1 + β
⌉+ b
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≥
(

t+ 1

3

)

+

(

t

2

)

− ⌈ t

1 + β
⌉

>

(

t+ 1

3

)

+

(

t

2

)

− ⌈ t

1 + β
⌉ >

(

t+ 1

3

)

.

It contradicts to
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1. Hence we have k ≤ t+ 1. �

Now we need the following theorem.

Theorem 4.13. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1. Let
β ≥ 0 be a constant. Let H be a left-compressed 3-graph on vertex set [t + 1]
with m edges satisfying |E(H)∆E(C3,m)| ≤ 4. Then Lβ(H) ≤ Lβ(C3,m).

Now we need the following lemmas.

Lemma 4.14 ([22]). Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

. Let H = (V,E) be a left-compressed 3-graph on the vertex set [t+1]
with m edges and not containing a clique of order t. If b = |Et(t+1)| ≤ 3, then

λ(H) < λ([t](3)).

Lemma 4.15. Let m, t, a and i be positive integers satisfying m =
(

t
3

)

− a,
3 ≤ a ≤ t− 2 and i ≥ 1. Let H = ([t], E) be a left-compressed 3-graph with m
edges. If the triple with minimum colex ordering in Hc is (t − 2 − i)(t − 2)t.
Then Lβ(H) ≤ Lβ(C3,m) for β ≥ 0.

Lemma 4.16. Let H and H ′ be left-compressed 3-graphs on vertex set [t]
with m =

(

t
3

)

− a edges, where 5 ≤ a ≤ t − 2, satisfying |E(H)△E(C3,m)| =
|E(H ′)△E(C3,m)| = 4 and the triples with the minimum colex ordering in

Hc and H ′c are (t − 3)(t − 2)(t − 1) and (t − 4)(t − 2)t respectively. Then

Lβ(H) ≤ Lβ(H
′) ≤ λ(C3,m) for β ≥ 0.

The proof of Lemma 4.15 and Lemma 4.16 are similar to the proof of The-
orem 1.12 in [21], we give the sketch here for completeness.

Proof of Lemma 4.15. Since H is left-compressed, then we have a ≥ 2i+1. To
show that λ(H) ≤ λ(C3,m), we will take an optimal weighting ~x for H , then
we take a feasible weighting, say ~z for C3,m by replacing a few coordinators of
~x and show that λ(H,~x) ≤ λ(C3,m, ~z). This would imply that

λ(H) = λ(H,~x) ≤ λ(C3,m, ~z) ≤ λ(C3,m).

Let us go into the details. Let ~x = (x1, x2, . . . , xt) be an optimal weighting
for H satisfying x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. First we point out that

(5)
λ(E1(t−2−i), ~x)− λ(E(t−2)(t−1), ~x)

= xt−2 + xt−1 + xt − x1 − xt−2−i ≥ 0.

To verify (5), by Remark 3.5(b), we have

x1 = xt−1 +
λ(E1\(t−1), ~x)

λ(E1(t−1), ~x)
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≤ xt−1 +
(x2 + · · ·+ xt−2)xt

x2 + · · ·+ xt−2 + xt
≤ xt−1 + xt;(6)

x1 = xt−2 +
λ(E1\(t−2), ~x)

λ(E1(t−2), ~x)

= xt−2 +
xt−2−i + · · ·+ xt−3 + xt−1

1− x1 − xt−2
xt

≤ xt−2 +
xt−2−i + · · ·+ xt−3 + xt−1

1− xt−2 − xt−1 − xt
xt (By (6))

≤ xt−2 +
x1 + x2 + · · ·+ xi + xt−2

1− xt−2−i − xt−1 − xt
xt;(7)

and

xt−2−i = xt−1 +
λ(E(t−2−i)\(t−1), ~x)

λ(E(t−2−i)(t−1), ~x)

= xt−1 +
(xt−3−(a−i−2) + xt−3−(a−i−1) + · · ·+ xt−3)− xt−2−i

1− xt−2−i − xt−1 − xt
xt

≤ xt−1 +
(xi+1 + xi+2 + · · ·+ xa−1)− xt−2−i

1− xt−2−i − xt−1 − xt
xt(8)

since a ≤ t− 2. Adding (7) and (8), we obtain that

x1 + xt−2−i ≤ xt−2 + xt−1 +
(x1 + · · ·+ xa+1)− xt−2−i

1− xt−2−i − xt−1 − xt
xt

≤ xt−2 + xt−1 +
(x1 + · · ·+ xt−2)− xt−2−i

1− xt−2−i − xt−1 − xt
xt

= xt−2 + xt−1 +
1− xt−1 − xt − xt−2−i

1− xt−2−i − xt−1 − xt
xt

= xt−2 + xt−1 + xt.

So, (5) is true. This implies that λ(E(t−2)(t−1), ~x) ≤ λ(E1(t−2−i), ~x). In what
follows, we divide the rest of the proof into three cases: a = 2i+ 1, a = 2i+ 2,
and a ≥ 2i+ 3.

We first consider the case that a ≥ 2i + 3. By Remark 3.5(b), we have
x1 = x2 = · · · = xt−a−2+i and xt−2−i = · · · = xt−3. Hence λ(C3,m, ~x) −
λ(G, ~x) = i(xt−2−ixt−2xt − x1xt−1xt). Also by Remark 3.5(b), we have

x1 = xt−2−i +
λ(E1\(t−2−i), ~x)

λ(E1(t−2−i), ~x)

= xt−2−i +
(xt−1 + xt−2)xt

λ(E1(t−2−i), ~x)
,

and

xt−2 = xt−1 +
λ(E(t−2)\(t−1), ~x)

λ(E(t−2)(t−1), ~x)



HOMOGENEOUS MULTILINEAR FUNCTIONS ON HYPERGRAPH CLIQUES 1049

= xt−1 +
(xt−3−i + · · ·+ xt−a−1+i)xt

λ(E(t−2)(t−1), ~x)
.

Recall that a ≥ 2i + 3 and λ(E(t−2)(t−1), ~x) ≤ λ(E1(t−2−i), ~x). We have
xt−2 − xt−1 ≥ x1 − xt−2−i. Hence

λ(C3,m, ~x)− λ(G, ~x) = i(xt−2−ixt−2xt − x1xt−1xt)

= i[xt−2−i(xt−2 + xt−1 − xt−1)xt − x1xt−1xt]

≥ i[xt−2−i(xt−1 + x1 − xt−2−i)xt − x1xt−1xt]

= i(xt−2−i − xt−1)(x1 − xt−2−i)xt

≥ 0.(9)

Therefore λ(C3,m) ≥ λ(C3,m, ~x) ≥ λ(G, ~x) = λ(G) in this case.
Next, we consider the case that a = 2i+ 2. Let

G′ = G
⋃

{(t− 2− i)(t− 2)t}\{(t− 4− i)(t− 1)t}.

Then λ(G′) ≤ λ(C3,m) by the case a = 2(i − 1) + 4. (Note that G′ = C3,m

when i− 1 = 0.) So it is sufficient to prove that λ(G) ≤ λ(G′). Clearly,

(10)
λ(G′, ~x)− λ(G, ~x) = xt−2−ixt−2xt − xt−4−ixt−1xt

= xt−2−ixt−2xt − x1xt−1xt.

Consider a new weighting ~y = (y1, y2, . . . , yt) given by yj = xj for j 6= t− 4− i,
j 6= t− 2− i and yt−4−i = xt−4−i − δ, yt−2−i = xt−2−i + δ. Then

λ(G′, ~y)− λ(G′, ~x)

= δ[λ(E′
t−2−i, ~x)− λ(E′

t−4−i, ~x)]− δ2λ(E′
(t−4−i)(t−2−i), ~x)

= δ(xt−4−i − xt−2−i)λ(E
′
(t−4−i)(t−2−i), ~x)− δ2λ(E′

(t−4−i)(t−2−i), ~x).

Let δ = xt−4−i−xt−2−i

2 . Clearly, ~y = (y1, y2, . . . , yt) is also a feasible weighting
for G and

λ(G′, ~y)− λ(G′, ~x)

=
(xt−4−i − xt−2−i)

2

4
λ(E′

(t−4−i)(t−2−i), ~x)

=
(x1 − xt−2−i)

2

4
λ(E1(t−2−i), ~x).(11)

Let ~z = (z1, z2, . . . , zt) given by zj = yj for j 6= t − 2, j 6= t − 1 and zt−2 =
yt−2 + η, zt−1 = yt−1 − η. Then

λ(G′, ~z)− λ(G′, ~y)

= η[λ(E′
t−2, ~y)− λ(E′

t−1, ~y)]− η2λ(′E(t−2)(t−1), ~y)

= η[(yt−2−iyt + yt−3−iyt + yt−4−iyt)− (yt−2 − yt−1)λ(E
′
(t−2)(t−1), ~y)]

− η2λ(E′
(t−2)(t−1), ~y).(12)
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Let

η =
(yt−2−i + yt−3−i + yt−4−i)yt − (yt−2 − yt−1)λ(E

′
(t−2)(t−1), ~y)

2λ(E′
(t−2)(t−1), ~y)

=
(xt−2−i + xt−3−i + xt−4−i)xt − (xt−2 − xt−1)λ(E(t−2)(t−1), ~x)

2λ(E(t−2)(t−1), ~x)
.

By Remark 3.5(b), we have

xt−2 = xt−1 +
xt−3−ixt

λ(E(t−2)(t−1), ~x)
.(13)

Hence, η = (xt−2−i+xt−4−i)xt

2λ(E(t−2)(t−1) ,~x)
and ~z = (z1, z2, . . . , zt) is also a feasible weighting

for G and

λ(G′, ~z)− λ(G′, ~y) =
(xt−2−i + xt−4−i)

2x2
t

4λ(E(t−2)(t−1), ~x)
.(14)

By Remark 3.5(b), we have

x1 = xt−i−2 +
xt−2xt + xt−1xt

λ(E1(t−i−2), ~x)
.(15)

Combing (10), (11), (14), and (15), we have

λ(G′, ~z)− λ(G, ~x)

= xt−2−ixt−2xt − x1xt−1xt +
(xt−2 + xt−1)

2x2
t

4λ(E1(t−i−2), ~x)
+

(xt−2−i + xt−4−i)
2x2

t

4λ(E(t−2)(t−1), ~x)

= [x1 −
xt−2xt + xt−1xt

λ(E1(t−i−2), ~x)
]xt−2xt − x1xt−1xt

+
(xt−2 + xt−1)

2x2
t

4λ(E1(t−i−2), ~x)
+

(xt−2−i + xt−4−i)
2x2

t

4λ(E(t−2)(t−1), ~x)

≥ x2
t

4λ(E1(t−i−2), ~x)
[−4(xt−2 + xt−1)xt−2 + (xt−2 + xt−1)

2 + 4x2
t−2)]

=
x2
t

4λ(E1(t−i−2), ~x)
(xt−2 − xt−1)

2

≥ 0.

Hence λ(G′) ≥ λ(G′, ~z) ≥ λ(G, ~x) = λ(G) in this case.
What remains is the case that a = 2i+ 1. Let

G′′ = G
⋃

{(t− 2− i)(t− 2)t}\{(t− 3− i)(t− 1)t}.

Then λ(G′′) ≤ λ(C3,m) by the case a = 2(i − 1) + 3. (Note that G′ = C3,m

when i− 1 = 0.) So it is sufficient to prove that λ(G) ≤ λ(G′′). Clearly,

λ(G′′, ~x)− λ(G, ~x) = xt−2−ixt−2xt − xt−3−ixt−1xt

= xt−2−ixt−2xt − x1xt−1xt.(16)
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Consider a new weighting ~u = (u1, u2, . . . , ut) given by uj = xj for j 6= t−2− i,
j 6= t− 3− i and ut−2−i = xt−2−i + α, ut−3−i = xt−3−i − α. Then

λ(G′′, ~u)− λ(G′′, ~x) = α(xt−3−i − xt−2−i)λ(E
′′
(t−3−i)(t−2−i) , ~x)

− α2λ(E′′
(t−3−i)(t−2−i), ~x).

Let α = xt−3−i−xt−2−i

2 . Clearly, ~u = (u1, u2, . . . , ut) is also a feasible weighting
and

λ(G′′, ~u)− λ(G′′, ~x)

=
(xt−i−3 − xt−2−i)

2

4
λ(E′′

(t−3−i)(t−2−i), ~x)

=
(x1 − xt−2−i)

2

4
λ(E1(t−2−i), ~x).(17)

Let ~v = (v1, v2, . . . , vt) given by vj = uj for j 6= t − 2, j 6= t − 1 and vt−2 =
ut−2 + β, vt−1 = ut−1 − β. Then

λ(G′′, ~v)− λ(G′′, ~u) = β[λ(E′′
t−2, ~u)− λ(E′′

t−1, ~u)]− β2λ(E′′
(t−2)(t−1), ~u)

= β(ut−2−iut + ut−3−iut)− β2λ(E′′
(t−2)(t−1), ~u).(18)

Let β = ut−2−iut+ut−3−iut

2λ(E′′
(t−2)(t−1)

,~u) . Clearly, β < ut. Hence, ~v = (v1, v2, . . . , vt) is also a

feasible weighting for G and

λ(G′′, ~v)− λ(G′′, ~u) =
(ut−2−i + ut−3−i)

2u2
t

4λ(E′′
(t−2)(t−1), ~u)

=
(xt−2−i + xt−3−i)

2x2
t

4λ(E(t−2)(t−1), ~x)
.(19)

By Remark 3.5(b), we have xt−2 = xt−1 and

x1 = xt−2−i +
2xt−1xt

λ(E1(t−2−i), ~x)
.(20)

Combing (16), (17), (19), and (20), we have

λ(G′′, ~v)− λ(G, ~x)

= xt−2−ixt−2xt − x1xt−1xt +
(xt−2−i + xt−3−i)

2x2
t

4λ(E(t−2)(t−1), ~x)
+

x2
t−1x

2
t

λ(E1(t−2−i), ~x)

= − 2x2
t−1x

2
t

λ(E1(t−2−i), ~x)
+

(xt−2−i + xt−3−i)
2x2

t

4λ(E(t−2)(t−1), ~x)
+

x2
t−1x

2
t

λ(E1(t−2−i), ~x)

≥ 0

since λ(E(t−2)(t−1), ~x) ≤ λ(E1(t−2−i), ~x). Hence λ(G′′) ≥ λ(G′′, ~z) ≥ λ(G, ~x) =
λ(G). This completes the proof of Lemma 4.15. �

Proof of Lemma 4.16. By Lemma 4.15, λ(G′) ≤ λ(C3,m). So it is sufficient
to show λ(G) ≤ λ(G′). Let ~x = (x1, x2, . . . , xt) be an optimal weighting for
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G satisfying x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. By Remark 3.5(b), xt−2 = xt−3 and
xt−1 = xt. Hence

λ(G′, ~x)− λ(G, ~x) = (xt−3 − xt−4)xt−2xt−1.(21)

Consider a new weighting ~y = (y1, y2, . . . , yt) given by yj = xj for j 6= t − 4,
j 6= t− 3 and yt−4 = xt−4 − δ, yt−3 = xt−3 + δ. Then

λ(G′, ~y)− λ(G′, ~x) = δ[λ(E′
t−3, ~x)− λ(E′

t−4, ~x)]− δ2λ(E′
(t−4)(t−3), ~y)

= δ(xt−4 − xt−3)λ(E
′
(t−4)(t−3), ~x)− δ2λ(E′

(t−4)(t−3), ~x).(22)

Let δ = xt−4−xt−3

2 . Clearly, ~y = (y1, y2, . . . , yt) is also a feasible weighting for
G. Also note that λ(E′

(t−4)(t−3), ~x) = λ(E(t−4)(t−3), ~x). Hence

λ(G′, ~y)− λ(G′, ~x) =
(xt−4 − xt−3)

2

4
λ(E′

(t−4)(t−3), ~x)

=
(xt−4 − xt−3)

2

4
λ(E(t−4)(t−3), ~x).(23)

Let ~z = (z1, z2, . . . , zt) be given by zi = yi for i 6= t−1, i 6= t and zt−1 = yt−1+η,
zt = yt − η. Then

λ(G′, ~z)− λ(G′, ~y) = η[λ(E′
t−1, ~y)− λ(E′

t, ~y)]− η2λ(E′
(t−1)t, ~y)

= η(yt−3yt−2 + yt−4yt−2)− η2λ(E′
(t−1)t, ~y)

= η(xt−3xt−2 + xt−4xt−2)− η2λ(E(t−1)t, ~x)(24)

in view of yt−4+yt−3=xt−4+xt−3, yt−2=xt−2 and λ(E′
(t−1)t, ~y)=λ(E(t−1)t, ~x).

Let η = xt−3xt−2+xt−4xt−2

2λ(E(t−1)t,~x)
. By the condition of |E(G)△E(C3,m)| = 4 we have

{1, 2} ⊆ E(t−1)t, so

η ≤ xt−2

2
.

Applying Remark 3.5(b), we have

xt−2 = xt +
λ(E(t−2)\t, ~x)

λ(E(t−2)t, ~x)

≤ xt +
(xt−4 + · · ·+ x3)xt−1

1− xt − xt−1 − xt−2 − xt−3

≤ xt + xt−1

= 2xt.(25)

So xt−2

2 ≤ xt. Recall that η ≤ xt−2

2 . Therefore, η ≤ xt. Hence, ~z =
(z1, z2, . . . , zt) is also a feasible weighting for G′, and

λ(G′, ~z)− λ(G′, ~y) =
(xt−4 + xt−3)

2x2
t−2

4λ(E(t−1)t, ~x)
.(26)
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By Remark 3.5(b), we have

xt−4 = xt−3 +
2xt−2xt

λ(E(t−4)(t−3), ~x)
.(27)

In addition,

λ(E(t−4)(t−3), ~x)− λ(E(t−1)t, ~x)

≥ (1− xt−4 − xt−3)− (1− xt−4 − xt−3 − xt−2 − xt−1 − xt)

> 0.(28)

Combing (21), (23), (26), (27), and (28), we have

λ(G′, ~z)− λ(G, ~x)

=
(xt−4 − xt−3)

2λ(E(t−4)(t−3), ~x)

4
+

(xt−4 + xt−3)
2x2

t−2

4λ(E(t−1)t, ~x)
− 2x2

t−2x
2
t

λ(E(t−4)(t−3), ~x)

=
x2
t−2x

2
t

λ(E(t−4)(t−3), ~x)
+

(xt−4 + xt−3)
2x2

t−2

4λ(E(t−1)t, ~x)
− 2x2

t−2x
2
t

λ(E(t−4)(t−3), ~x)

≥ 0.

Hence λ(G) = λ(G, ~x) ≤ λ(G′, ~z) ≤ λ(G′). �

Now we continue the proof of Theorem 4.1. By Claim 4.12, we have k ≤ t+1.
If k ≤ t, then Lβ(H) ≤ Lβ([t]

(3)) ≤ Lβ(C3,m) since [t](3) ⊆ C3,m. Assume that
k = t+ 1. Using Lemma 4.9 and Lemma 4.11 and recalling that β ≥ t − 1 we
have

m = |E| = |E ∩ [k − 1](3)|+ |[k − 2](2) ∩ Ek|+ |E(k−1)k|

≥
(

k − 1

3

)

− ⌈ k − 2

1 + β
⌉+

(

k − 2

2

)

− ⌈ b

1 + β
⌉+ b

=

(

t

3

)

+

(

t− 1

2

)

− ⌈ t− 1

1 + β
⌉ − ⌈ b

1 + β
⌉+ b

=

(

t

3

)

+

(

t− 1

2

)

+ b− 2.(29)

Since H is left-compressed, this implies that |E(H)∆E(C3,m)| ≤ 4. Hence
Lβ(H) ≤ Lβ(C3,m) by Theorem 4.13. We complete the proof of Theorem
4.1. �

We now prove Lemmas 4.9-4.11. The basic idea in the proof of these lemmas
follows from a result given by Talbot in [11]. We remove a vertex and related
edges from H and give the weight of this vertex to another vertex. We then
insert some other edges to H and check two conditions: (i) the total weight of
the 3-graph has not decreased; (ii) the number of edges we have added does
not exceed the number previously removed.
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Proof of Lemma 4.9. Since E is left-compressed, then Ei := {1, . . . , i − 1, i +
1, . . . , k}(2) for 1 ≤ i ≤ b, and Ei\j = ∅ for 1 ≤ i < j ≤ b. Hence, by Remark
3.5(b), we have x1 = x2 = · · · = xb. We define a new feasible weighting ~y for
H as follows. Let yi = xi for i 6= k − 1, k, yk−1 = xk−1 + xk and yk = 0.

By Lemma 3.2(a), Lβ(Ek−1, ~x) = Lβ(Ek, ~x), so

Lβ(H,~y)− Lβ(H,~x) = xk(Lβ(Ek−1, ~x)− Lβ(Ek, ~x))− x2
kLβ(E(k−1)k, ~x)

= −x2
kLβ(E(k−1)k, ~x)

= −x2
k[λ(E(k−1)k, ~x)− βλ(Ec

(k−1)k , ~x)]

= −bx1x
2
k + βx2

k

k−2
∑

i=b+1

xi.(30)

Since yk = 0 we may remove all edges containing k from E to form a new
3-graph H◦ := ([k], E◦) with |E◦| := |E| − |Ek| and Lβ(H

◦, ~y) = Lβ(H,~y).
We will show that if Lemma 4.9 fails to hold then there exists a set of edges
F ⊂ [k − 1](3) \ E satisfying

(31) (1 + β)λ(F, ~y) > −bx1x
2
k + βx2

k

k−2
∑

i=b+1

xi

and

(32) |F | ≤ |Ek|.
Then, using (30), (31), and (32), the 3-graph H ′ := ([k], E′), where E′ :=
E◦ ∪ F , satisfies |E′| ≤ |E| and

Lβ(H
′, ~y) = Lβ(H

◦, ~y) + (1 + β)λ(F, ~y)

> Lβ(H,~y) + bx1x
2
k − βx2

k

k−2
∑

i=b+1

xi

= Lβ(H,~x).

Hence Lβ(H
′) > Lβ(H). This contradicts to Lβ(H) = L

(3)
(β,m).

We must now construct the set of edges F satisfying (31) and (32). Applying
Remark 3.5(b) by taking i = 1, j = k − 1, we have

x1 = xk−1 +
(1 + β)λ(E1\(k−1), ~x)

λ(E1(k−1), ~x)− βλ(Ec
1(k−1), x)

= xk−1 +
(1 + β)λ(E1\(k−1) , ~x)

λ(E1(k−1), ~x)
,

since Ec
1(k−1) = ϕ. Let C := [k − 2](2) \ Ek−1. Then λ(E1\(k−1), ~x) =

xk

∑k−2
i=b+1 xi + λ(C, ~x). Applying this and multiplying bx2

k to the above equa-

tion (note that λ(E1(k−1), ~x) =
∑k

i=2,i6=k−1 xi), we have

bx1x
2
k = bxk−1x

2
k +

b(1 + β)x3
k

∑k−2
i=b+1 xi

∑k
i=2,i6=k−1 xi

+
b(1 + β)x2

kλ(C, ~x)
∑k

i=2,i6=k−1 xi

.
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Since x1 ≥ x2 ≥ · · · ≥ xk, then

bx1x
2
k − βx2

k

k−2
∑

i=b+1

xi ≤ (b(1 +
(1 + β)(k − 2− b)

k − 3
)

− β(k − 2− b))xk−1x
2
k +

b(1 + β)xkλ(C, ~x)

k − 2
.(33)

Define p := ⌈ b|C|
k−2⌉ and q := ⌈b(1 + k−2−b

k−3 ) − β(k − 2 − b)⌉. Note that q =

⌈b(1+ k−2−b
k−3 )−β(k−2−b)⌉ ≤ k−2 since b ≤ k−2. Let the set F1 ⊂ [k−1](3)\E

consist of the p heaviest edges in [k− 1](3) \E containing the vertex k− 1 (note
that |[k − 2](2) \ Ek−1| = |C| ≥ p). Recalling that yk−1 = xk−1 + xk, we have

(1 + β)λ(F1, ~y) ≥
b(1 + β)xkλ(C, ~x)

k − 2
+ p(1 + β)xk−1x

2
k.

So using (33)

(34) (1 + β)λ(F1, ~y) + βx2
k

k−2
∑

i=b+1

xi − bx1x
2
k ≥ xk−1x

2
k(p(1 + β)− q).

We now distinguish two cases.
Case 1: p(1 + β) > q.

In this case (1+β)λ(F1, ~y)+βx2
k

∑k−2
i=b+1 xi− bx1x

2
k > 0 so defining F := F1

satisfies (31). We need to check that |F | ≤ |Ek|. Since E is left-compressed,
then [b](2) ∪ {1, . . . , b} × {b+ 1, . . . , k − 1} ⊂ Ek. Hence

(35) |Ek| ≥
b[b− 1 + 2(k − 1− b)]

2
≥ b(k − 1)

2

since b ≤ k − 2. Since C ⊂ [k − 2](2), we have |C| ≤
(

k−2
2

)

. Note that

|F | = p = ⌈ b|C|
k−2⌉. Using (35) we obtain

|F | ≤ ⌈b(k − 3)

2
⌉ ≤ b(k − 1)

2
≤ |Ek|.

So both (31) and (32) are satisfied.
Case 2: p(1 + β) ≤ q.
Suppose that Lemma 4.9 fails to hold. So |[k−1](3)\E| ≥ ⌈ k−2

1+β ⌉+1 ≥ ⌈ 1+q
1+β ⌉.

Let F2 consist of any ⌈ 1+q−p(1+β)
1+β ⌉ edges in [k − 1](3) \ (E ∪ F1) and define

F := F1∪F2. Then since (1+β)λ(F2, ~y) ≥ (1+β)⌈ 1+q−p(1+β)
1+β ⌉x3

k−1 and using

(34),

(1 + β)λ(F, ~y) + βx2
k

k−2
∑

i=b+1

xi − bx1x
2
k

≥ xk−1x
2
k(p(1 + β)− q) + (1 + β)⌈1 + q − p(1 + β)

1 + β
⌉x3

k−1 > 0.
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So (31) is satisfied. What remains is to check that |F | ≤ |Ek|. In fact,

|F | = ⌈ 1 + q

1 + β
⌉ ≤ 1 + q ≤ k − 1 ≤ b(k − 1)

2
≤ |Ek|

when b ≥ 2. If b = 1, then,

|F | = ⌈ 1 + q

1 + β
⌉ ≤ 3 ≤ k − 2 =

b[b− 1 + 2(k − 1− b)]

2
≤ |Ek|

since k ≥ 5 (Lemma 4.9 clearly holds for k ≤ 4). This completes the proof. �

Proof of Lemma 4.10. We use the notations from Lemma 4.9. If Lemma 4.10

fails to hold, then |C| = |[k−2]\Ek−1| ≥ ⌈ b
1+β ⌉+1 ≥ b(1+ (1+β)(k−2−b)

k−3
)−β(k−2−b)

(2− b

k−2
)(1+β)

.

We again construct a new set of edges F ⊆ [k − 1]\E and need to check that
F satisfies (31) and (32). Let F consist of all edges in [k − 1](3)\E containing
the vertex k − 1 (So F = C × {k − 1}). Then, since yk−1 = xk−1 + xk,

(1 + β)λ(F, ~y) = (1 + β)(xk−1 + xk)λ(C, ~x).

Using (33) we have

(1 + β)λ(F, ~y)− bx1x
2
k + βx2

k

k−2
∑

i=b+1

xi ≥ − (b(1 +
(1 + β)(k − 2− b)

k − 3
)

− β(k − 2− b))xk−1x
2
k

+ (2 − b

k − 2
)(1 + β)xkλ(C, ~x).

In order to show that (31) holds it is sufficient to show

(2− b

k − 2
)(1 + β)|C| > b(1 +

(1 + β)(k − 2− b)

k − 3
)− β(k − 2− b).

This follows from

|C| = |[k − 1](2)\Ek−1| >
b(1 + (1+β)(k−2−b)

k−3 )− β(k − 2− b)

(2 − b
k−2 )(1 + β)

.

For (32), by Lemma 4.9, we have

|F | ≤ |[k − 1](3)\E| ≤ ⌈
b(1 + k−2−b

k−3 )− β(k − 2− b)

1 + β
⌉

and in the proof of Lemma 4.9 we have show that ⌈ b(1+ k−2−b

k−3
)−β(k−2−b)

1+β ⌉ ≤ |Ek|.
Hence F satisfies (32). So, we may construct a new 3-graph H ′ with at most

m edges but Lβ(H) < Lβ(H
′). This contradicts to Lβ(H) = L

(3)
(β,m). Hence

|[k − 1](2)\Ek−1| ≤ ⌈ b

1 + β
⌉.

This completes the proof. �
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Proof of Lemma 4.11. Since E is left-compressed, then Ei := {1, . . . , i− 1, i+
1, . . . , k}(2) for 1 ≤ i ≤ b, and Ei\j = ∅ for 1 ≤ i < j ≤ b. Hence, by Remark
3.5(b), we have x1 = x2 = · · · = xb.

We define a new feasible weighting ~z for H as follows. Let zi = xi for
i 6= k − 1, k, zk−1 = 0 and zk = xk−1 + xk.

By Lemma 3.2(a), Lβ(Ek−1, ~x) = Lβ(Ek, ~x), so

Lβ(H,~z)− Lβ(H,~x) = xk(Lβ(Ek−1, ~x)− Lβ(Ek, ~x))− x2
k−1Lβ(E(k−1)k, ~x)

= −x2
k−1Lβ(E(k−1)k, ~x)

= −x2
k−1[λ(E(k−1)k, ~x)− βλ(Ec

(k−1)k , ~x)]

= −bx1x
2
k−1 + βx2

k−1

k−2
∑

i=b+1

xi.(36)

Since zk−1 = 0 we may remove all edges containing k−1 from E to form a new
3-graph H∗ := ([k], E∗) with |E∗| := |E| − |Ek| and Lβ(H

∗, ~y) = Lβ(H,~y).
By Lemma 4.10, we have

|[k − 1](2)\Ek| ≤ ⌈ b

1 + β
⌉.

Hence

|Ek| = |[k − 2](2)
⋂

Ek|+ |E(k−1)k| ≥
(

k − 2

2

)

− ⌈ b

1 + β
⌉+ b ≥

(

k − 2

2

)

.

If b = k − 2, Lemma 4.11 clearly holds. Next we assume b ≤ k − 3. We
will show that if Lemma 4.11 fails to hold, then there exists a set of edges
G ⊂ {1, 2, . . . , k − 2, k}(3) \ E satisfying

(37) (1 + β)λ(G,~z) > −bx1x
2
k + βx2

k

k−2
∑

i=b+1

xi

and

(38) |G| ≤
(

k − 2

2

)

.

Then, using (36), (37), and (38), the 3-graph H ′ := ([k], E′), where E′ :=
E∗ ∪ F , satisfies |E′| ≤ |E| and

Lβ(H
′, ~z) = Lβ(H

∗, ~z) + (1 + β)λ(F, ~z)

> Lβ(H,~z) + bx1x
2
k − βx2

k

k−2
∑

i=b+1

xi

= Lβ(H,~x).

Hence Lβ(H
′) > Lβ(H). This contradicts to Lβ(H) = L

(3)
(β,m).



1058 X. LU, Q. TANG, X. ZHANG, AND C. ZHAO

We must now construct the set of edges G satisfying (37) and (38). Applying
Remark 3.5(b) by taking i = 1, j = k, we have

x1 = xk +
(1 + β)λ(E1\k, ~x)

λ(E1k, ~x)− βλ(Ec
1k) , x)

= xk +
(1 + β)λ(E1\k , ~x)

λ(E1k, ~x)
,

since Ec
1k = ϕ. Let D := [k − 2](2) \ Ek. Then λ(E1\k, ~x) = xk−1

∑k−2
i=b+1 xi +

λ(D,~x). Applying this and multiplying bx2
k−1 to the above equation (note that

λ(E1k, ~x) =
∑k−1

i=2 xi), we have

bx1x
2
k−1 = bx2

k−1xk +
b(1 + β)x3

k−1

∑k−2
i=b+1 xi

∑k−1
i=2 xi

+
b(1 + β)x2

k−1λ(D,~x)
∑k−1

i=2 xi

.

Since x1 ≥ x2 ≥ · · · ≥ xk, then

bx1x
2
k−1 − βx2

k−1

k−2
∑

i=b+1

xi ≤ bx2
k−1xk +

(1 + β)b(k − 2− b)

k − 3
x3
k−1

− β(k − 2− b)x3
k−1

+
b(1 + β)xk−1λ(D,~x)

k − 2
.

Let G consist of those edges in {1, 2, . . . , k − 2, k}(3)\E containing the vertex
k. So

(1 + β)λ(G, ~x) = (1 + β)(xk−1 + xk)λ(D,~x).

Suppose that Lemma 4.11 fails to hold, then |D| ≥ ⌈ b
1+β ⌉+1 and (1+β)|D|(1−

b
k−2 ) + β(k − 2− b) ≥ (1+β)b(k−2−b)

k−3 . Therefore

(1 + β)λ(G,~z)− bx1x
2
k−1 + βx2

k−1

k−2
∑

i=b+1

xi

≥ ((1 + β)(⌈ b

1 + β
⌉+ 1)− b)xk−1x

2
k

+ (1 + β)|D|(1 − b

k − 2
)x3

k−1 + β(k − 2− b)x3
k−1

− (1 + β)b(k − 2− b)

k − 3
x3
k−1

> (1 + β)|D|(1 − b

k − 2
)x3

k−1 + β(k − 2− b)x3
k−1

− (1 + β)b(k − 2− b)

k − 3
x3
k−1 ≥ 0.

Hence (1+β)λ(G,~z) > −bx1x
2
k+βx2

k

∑k−2
i=b+1 xi and so (37) holds. So, we may

construct a new 3-graph H ′ with at most m edges but Lβ(H) < Lβ(H
′). This
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contradicts to Lβ(H) = L
(3)
(β,m). Hence

|[k − 2](2)\Ek| ≤ ⌈ b

1 + β
⌉.

This completes the proof. �

4.2. Proof of Theorem 4.2

Proof of Theorem 4.2. (a) Clearly Lβ(H) ≥ Lβ([t]
(3)) since H contains K3

t .
Let ~x = (x1, x2, . . . , xt+1) be an optimal weighting for H satisfying x1 ≥ x2 ≥
· · · ≥ xt+1 ≥ 0. If xt+1 = 0, then Lβ(H) ≤ Lβ([t]

(3)). Assume that xt+1 > 0,
we need the following lemma.

Lemma 4.17. Let H be a 3-graph on the vertex set [t+1]. Let ~x = (x1, x2, . . .,
xt+1) be an optimal weighting for the graph-Lagrangian of H satisfying x1 ≥
x2 ≥ · · · ≥ xt+1 ≥ 0. Then x1 < xt−1 + xt + xt+1 or Lβ(H) ≤ λ(H) ≤
1
6
(t−2)2

(t−1)t < λ([t](3)) = Lβ([t]
(3)).

Proof. If x1 ≥ xt−1 + xt + xt+1, then 2x1 + x2 + · · ·+ xt−3 + xt−2 > x1 + x2 +
· · ·+xt−2+xt−1+xt+xt+1 = 1. Recalling that x1 ≥ x2 ≥ · · · ≥ xt−2, we have
x1 ≥ 1

t−1 . By Lemma 3.2(a) (set β = 0),

λ(H) =
1

3
λ(E1, x) ≤

1

3

(

t

2

)

(

1− 1
t−1

t

)2

=
1

6

(t− 2)2

(t− 1)t

<
1

6

(t− 2)(t− 1)

t2
= λ([t](3)).

The first inequality follows from Theorem 2.2. Hence x1 < xt−1 + xt + xt+1 or
Lβ(H) ≤ λ(H) < λ([t](3)) = Lβ([t]

(3)) holds. �

Now we continue the proof of Theorem 4.2. Let H ′ = [t + 1](3) \ {(t −
1)t(t + 1)}. Without loss of generality, we can assume that H ⊆ H ′ since

m ≤
(

t+1
3

)

− 1. By Fact 2.3 Lβ(H) ≤ Lβ(H
′). Let ~y = (y1, y2, . . . , yt+1)

be an optimal weighting for H ′ satisfying y1 ≥ y2 ≥ · · · ≥ yt+1 ≥ 0. By
Remark 3.5(b), we have y1 = y2 = · · · = yt−2 and yt−1 = yt = yt+1. If
yt+1 = 0, then Lβ(H,~y) ≤ Lβ([t]

(3)). Assume that yt+1 > 0. By Lemma

4.17, if y1 ≥ yt−1 + yt + yt+1 = 3yt+1, then Lβ(H
′) ≤ λ(H ′) ≤ 1

6
(t−2)2

(t−1)t <

λ([t](3)) = Lβ([t]
(3)). Assume that y1 < yt−1 + yt + yt+1 = 3yt+1. Hence

yt+1 > 1
3y1 ≥ 1

3(t+1) . Recalling that β ≥ 27
(

t
2

)

− 1, so

Lβ(H
′) = Lβ([t+ 1](3) \ {(t− 1)t(t+ 1)}, ~y)
= Lβ([t+ 1](3), ~y)− (1 + β)yt−1ytyt+1

≤ Lβ([t+ 1](3))− (1 + β)yt−1ytyt+1

<

(

t+ 1

3

)

1

(t+ 1)3
− 27

(

t

2

)

1

27(t+ 1)3
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=

(

t

3

)

1

t3
= Lβ([t]

(3)).

Clearly, the vector ~x = (x1, x2, . . . , xn), given by xi := 1
t if i is a vertex in

a fixed maximum clique and xi = 0 otherwise, is an optimal weighting. This
completes the proof of part (a).

(b) Let ~x = (x1, x2, . . . , xt+1) be an optimal weighting for H satisfying
x1 ≥ x2 ≥ · · · ≥ xt+1 ≥ 0. If xt+1 = 0, Lβ(H) < Lβ([t]

(3)) since H does

not contain [t](3). Since H does not contain a clique of order t, |{1, 2, . . . , t −
1, t + 1}(3)\E| ≥ 1. Let F = [t](3)\E and H ′ = H

⋃

F, then H ′ has at most
(

t+1
3

)

− 1 edges and Lβ(H) = Lβ(H,~x) < Lβ(H
′, ~x) ≤ Lβ(H

′). By Fact 2.3,

we can assume H ′ = [t+ 1](3) \ {(t− 1)t(t+ 1)} without loss of generality. We
have proved that Lβ(H

′) = Lβ([t]
(3)) in part (a). Hence Lβ(H) ≤ Lβ([t]

(3)).
This completes the proof part(b). �

4.3. Proof of Theorem 4.3

Denote L
(3)
(β,m,t) := max{Lβ(H) : H is a 3-graph with m edges and H con-

taining K3
t }. We give the following remark.

Remark 4.18. Let m and t be a positive integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

−
1. Let β ≥ 0 be a constant. Let H be a left-compressed 3-graph with m

edges containing a clique order of t such that Lβ(H) = L
(3)
(β,m,t). Let ~x =

(x1, x2, . . . , xn) be an optimal weighting for H and k be the number of non-
zero weights in ~x. Then the results of Lemmas 4.9, 4.10 and 4.11 also hold.
The proofs are similar to the proofs of Lemmas 4.9, 4.10 and 4.11. So we omit
the details here.

Proof of Theorem 4.3. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.

Let β ≥ 27
(

t
2

)

−1 be a constant. Let H be a 3-graph with m edges containing a

clique order of t. We can assume that Lβ(H) = L
(3)
(β,m,t), i.e., H is an extremal

graph. We can also assume H is left-compressed. Otherwise if H is not left-
compressed, performing a sequence of left-compressing operations we will get
a left-compressed 3-graph G. The order of its maximum complete 3-graph is
still t. By Lemma 3.4 G is also an extremal graph. Since H contains [t](3), we
have Lβ(H) ≥ Lβ([t]

(3)). Next we prove that Lβ(H) ≤ Lβ([t]
(3)).

Let ~x = (x1, x2, . . . , xn) be an optimal weighting for H and k be the number
of non-zero weights in ~x. By Remark 4.18 and Claim 4.12, we have k ≤ t+ 1.
Hence Lβ(H) = Lβ([t]

(3)) by Theorem 4.2(a). �

4.4. Proof of Theorem 4.4

Denote L
(3)−
(β,m,t) := max{Lβ(H) : H is a 3-graph with m edges and H not

containing K3
t }. The following lemma implies that we only need to consider

left-compressed 3-graphs when Theorem 4.4 is proved.
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Lemma 4.19. Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.

Let β ≥ 27
(

t
2

)

− 1 be a constant. Then Theorem 4.4 holds or there exists a

left-compressed 3-graph H with m edges not containing K3
t such that Lβ(H) =

L
(3)−
(β,m,t).

Proof. Let H be a 3-graph on the vertex set [n] with m edges not contain-

ing K3
t such that Lβ(H) = L

(3)−
(β,m,t), i.e., H is an extremal graph. Let ~x =

(x1, x2, . . . , xn) be an optimal weighting of H . We can also assume that
x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xn = 0 since otherwise we can just
relabel the vertices of H and obtain another extremal graph not containing K3

t

with an optimal weighting ~x = (x1, x2, . . . , xt) satisfying x1 ≥ x2 ≥ · · · ≥ xk >
xk+1 = · · · = xn = 0. If k ≤ t+1, then Theorem 4.4 holds by Theorem 4.2(b).
Hence we assume k ≥ t + 2. Next we obtain a new 3-graph H ′ from H by
performing the following:

(1) If (t−2)(t−1)t ∈ E(H), then there is at least one triple in [t](3) \E(H)
since H does not contain K3

t . We replace (t−2)(t−1)t by such a triple.
Denote the new graph as H ′.

(2) If an edge in H ′ has a descendant other than (t−2)(t−1)t that is not in
E(H ′), then replace this edge by a descendant other than (t−2)(t−1)t
with the lowest hierarchy. Repeat this until there is no such an edge.

Then H ′ satisfies the following properties:

(1) The number of edges in H ′ is the same as the number of edges in H .
(2) Lβ(H) = Lβ(H,~x) ≤ Lβ(H

′, ~x) ≤ Lβ(H
′).

(3) (t− 2)(t− 1)t /∈ E(H ′).
(4) For any edge in E(H ′), all its descendants other than (t − 2)(t − 1)t

will be in E(H ′).

If H ′ is not left-compressed, then there is an ancestor uvw of (t − 2)(t − 1)t
such that uvw ∈ E(H ′). uvw must be (t − 2)(t − 1)(t + 1) or an ancestor
of (t − 2)(t − 1)(t + 1). Hence (t − 2)(t − 1)(t + 1) and all descendants of
(t − 2)(t − 1)(t + 1) other than (t − 2)(t − 1)t will be in E(H ′). Let ~y be an
optimal weighting for H ′. We can assume that ~y has at least t + 2 positive
weights. Since otherwise Lβ(H,~x) ≤ Lβ(H

′, ~x) ≤ Lβ(H
′, ~y) < Lβ([t]

(3)) by
Theorem 4.2(b). This confirms Theorem 4.4. Without loss generality, we can
assume the first t + 2 weights of ~y are positive. By Lemma 3.2(a) and the
structure of H ′, 1(t + 1)(t + 2) ∈ E(H ′). Hence all triples in the form of
1j(t+ 2) (where 2 ≤ j ≤ t+ 1). So

m ≥
(

t+ 1

3

)

− (t− 1)− 1 + t =

(

t+ 1

3

)

which contradicts to
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.
So we can assume that H ′ is left-compressed. Clearly H ′ does not contain

[t](3). Since H ′ is left-compressed, then H ′ does not contain a clique of order
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t. Therefore we get a left-compressed extremal graph. Hence we can assume
that H is left-compressed. This completes the proof of Lemma 4.19. �

We also need the following remark in the proof of Theorem 4.4.

Remark 4.20. Let m and t be a positive integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

−
1. Let β ≥ 0 be a constant. Let H be a left-compressed 3-graph with m

edges not containing a clique order of t such that Lβ(H) = L
(3)−
(β,m,t). Let

~x = (x1, x2, . . . , xn) be an optimal weighting for H and k be the number of
non-zero weights in ~x. Then the results of Lemmas 4.9, 4.10 and 4.11 also hold
or Lβ(H) < Lβ([t]

(3)) holds. The proofs are similar to the proofs of Lemmas
4.9, 4.10 and 4.11. So we omit the details here.

Proof of Theorem 4.4. Let m and t be integers satisfying
(

t
3

)

≤ m ≤
(

t+1
3

)

− 1.

Let β ≥ 27
(

t
2

)

− 1 be a constant. Let H be a 3-graph with m edges not

containing a clique of order t. We can assume that Lβ(H) = L
(3)−
(β,m,t), i.e., H

is an extremal graph. By Lemma 4.19 we can assume H is left-compressed.
Let ~x = (x1, x2, . . . , xn) be an optimal weighting for H satisfying x1 ≥ x2 ≥
· · · ≥ xn ≥ 0 with k positive weights. If Lβ(H) < Lβ([t]

(3)), then Theorem 4.4
holds. Otherwise by Remark 4.20 and Claim 4.12, we have k ≤ t + 1. Hence
Lβ(H) < Lβ([t]

(3)) by Theorem 4.2(b), i.e., Theorem 4.4 holds. �

4.5. Proof of Theorems 4.6 and 4.7

The following lemma implies that we only need to consider left-compressed
3-graphs when Theorems 4.6 and 4.7 are proved.

Lemma 4.21. Let m and t be positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

.

Let β ≥ 0 be a constant. Then Theorem 4.6 and Theorem 4.7 hold or there

exists a left-compressed 3-graph H with m edges not containing [t](3) such that

Lβ(H) = L
(3)−
(β,m,t).

Proof. Let H be a 3-graph on the vertex set [n] with m edges not contain-

ing K3
t such that Lβ(H) = L

(3)−
(β,m,t), i.e., H is an extremal graph. Let ~x =

(x1, x2, . . . , xn) be an optimal weighting of H satisfying x1 ≥ x2 ≥ · · · ≥ xk >
xk+1 = · · · = xn = 0. If k ≥ t + 2, then use the same method in the proof
of Lemma 4.19 we can obtain a left-compressed extremal graph not containing
[t](3).

If k ≤ t, since H does not contain K3
t , we have m ≤

(

t
3

)

− 1. If H is not
left-compressed, performing a sequence of left-compressing operations, we will
get a left-compressed 3-graph H ′ with m edges. Since m ≤

(

t
3

)

− 1, H ′ does

not contain [t](3). By Lemma 3.4 H ′ is also an extremal graph.
Hence we only need to consider k = t+1. Next we obtain a new 3-graph H ′

from H as we did in the proof of Lemma 4.19.
If H ′ is not left-compressed, then there is an ancestor uvw of (t− 2)(t− 1)t

such that uvw ∈ E(H ′). We claim that uvw must be (t − 2)(t − 1)(t + 1).
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Otherwise uvw = (t − 2)t(t + 1) or uvw = (t − 1)t(t + 1), then m ≥
(

t+1
3

)

−
2 >

(

t
3

)

+
(

t−1
2

)

. This contradicts to m ≤
(

t
3

)

+
(

t−1
2

)

. Hence uvw must be

(t − 2)(t − 1)(t + 1). Since m ≤
(

t
3

)

+
(

t−1
2

)

and all the descendants of uvw
other than (t− 2)(t− 1)t of an edge in H ′ will be an edge in H ′, then there are
two possibilities.

Case 1: H ′ = ([t](3) \ {(t− 2)(t− 1)t}) ∪ {ij(t+ 1), ij ∈ [t− 1](2)}.
Case 2: H ′ = ([t](3)\{(t−2)(t−1)t})∪{ij(t+1), ij ∈ [t−1](2)}∪{1t(t+1)}.
We will show if these two cases happen, then Theorems 4.6 and 4.7 hold.

Note that ([t](3) \ {(t− 2)(t− 1)t}) ∪ {ij(t+ 1), ij ∈ [t− 1](2)} ⊆ ([t](3) \ {(t−
2)(t−1)t})∪{ij(t+1), ij ∈ [t−1](2)}∪{1t(t+1)}. So it is sufficient to assume
H ′ = ([t](3)\{(t−2)(t−1)t})∪{ij(t+1), ij ∈ [t−1](2)}∪{1t(t+1)} and show that
Lβ(H

′, ~x) < Lβ([t]
(3)) since then Lβ(H) = Lβ(H,~x) ≤ Lβ(H

′, ~x) < Lβ([t]
(3)),

i.e., Theorems 4.6 and 4.7 hold.
Let H∗ = [t](3)∪{ij(t+1), ij ∈ [t−1](2)}∪{1t(t+1)}\{(t−2)(t−1)(t+1)}.

Then Lβ(H
′, ~x) ≤ Lβ(H

∗, ~x) since x1 ≥ x2 ≥ · · · ≥ xt+1 > 0. Note that

H∗ contains [t](3) and the number of the edges in H∗ is
(

t
3

)

+
(

t−1
2

)

. Hence

Lβ(H
∗) = Lβ([t]

(3)) by Theorem 2.16. We claim ~x is not an optimal weight

for H∗. So Lβ(H
∗, ~x) < Lβ(H

∗) = Lβ([t]
(3)). To show this we prove that an

optimal weighting for H∗ must have t positive weights which contradicts to
~x has t + 1 positive weights. Clearly, the optimal weighting for H∗ has at
least t positive weights. Let ~y = (y1, y2, . . . , yt+1) be an optimal weighting for
H∗. Note that H∗ is left-compressed. Hence ~y = (y1, y2, . . . , yt+1) satisfies
y1 ≥ y2 ≥ · · · ≥ yt+1 ≥ 0. Suppose yt+1 > 0 for a contradiction. Let
G = H∗\{1t(t+ 1)}⋃{(t− 2)(t− 1)t}. Since G contains [t](3) and the number
of the edges in G is

(

t
3

)

+
(

t−1
2

)

, we have Lβ(G) = Lβ([t]
(3)) by Theorem 2.16.

Clearly,

Lβ(G, ~y)− Lβ(H
∗, ~y) = yt−2yt−1yt+1 − y1ytyt+1.(39)

Using Remark 3.5(b), we have

y1 = yt +
(1 + β)(y2 + · · ·+ yt−1)yt+1

y2 + · · ·+ yt−1 + yt+1
< yt + (1 + β)yt+1,(40)

y1 = yt−2 +
(1 + β)(yt−1 + yt)yt+1

y2 + · · ·+ yt−3 + yt−1 + yt + yt+1
,(41)

and

yt−1 = yt +
(1 + β)(y2 + · · ·+ yt−3)yt+1

y1 + · · ·+ yt−2 − βyt+1
.(42)

Combing (40), (41) and (42), we have

0 < y1 − yt−2 < yt−1 − yt(43)
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for t ≥ 6 (We have yt−2yt−1yt+1 − y1ytyt+1 > 0 for t ≤ 5 by a direction
calculation). Applying (43) to (39), we have

Lβ(G, ~y)− Lβ(H
∗, ~y) = yt−2yt−1yt+1 − y1ytyt+1

= [(yt−1 − yt)yt−2 − (y1 − yt−2)yt]yt+1

> (y1 − yt−2)(yt−2 − yt)yt+1 ≥ 0

for yt+1 > 0. Hence Lβ(H
∗, ~y) < Lβ(G, ~y) ≤ Lβ([t]

(3)) = Lβ(H
∗). This

contradicts to ~y is an optimal weighting for H∗. Hence yt+1 = 0.
So we can assume that H ′ is left-compressed. Clearly H ′ does not contain

[t](3). Since H ′ is left-compressed, then H ′ does not contain a clique of order
t. Therefore we get a left-compressed extremal graph. Hence we can assume
that H is left -compressed. This completes the proof of Lemma 4.21. �

Proof of Theorem 4.6. Let m and t be a positive integers satisfying
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

− 1
2⌈ t−1

1+β ⌉. Let β ≥ 0 be a constant. Let H be a 3-graph with

m edges not containing a clique order of t such that Lβ(H) = L
(3)−
(β,m,t). Let

~x = (x1, x2, . . . , xn) be an optimal weighting for H and k be the number of non-
zero weights in ~x. By Lemma 4.21 we can assume that H is left-compressed and
x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xn = 0. So there is an edge e containing
both k − 1 and k by Lemma 3.2(a). Recalling that H is left-compressed, we
have 1(k − 1)k ∈ E. Let b := max{i : i(k − 1)k ∈ E}. If k ≤ t, then
Lβ(H) < Lβ([t]

(3)). Hence we assume k ≥ t + 1. By Remark 4.20 and Claim
4.12, we only need to consider the case of k = t+1. Now we need the following
lemma.

Lemma 4.22 ([22]). Let H be a 3-graph on the vertex set [t + 1]. Let ~x =
(x1, x2, . . . , xt+1) be an optimal weighting for the graph-Lagrangian of H satis-

fying x1 ≥ x2 ≥ · · · ≥ xt+1 ≥ 0. Then x1 < xt−2 + xt−1 or λ(H) ≤ 1
6
(t−2)2

(t−1)t <

λ([t](3)).

Let D = [t](3)\E. Also let b = |Et(t+1)| with a little notation abuse. By

Lemma 4.11 and Remark 4.18, we have |D| ≤ ⌈ 2b
1+β ⌉. So ⌊ |D|

2 ⌋ ≤ b and

the triples 1t(t + 1), . . . , ⌊ |D|
2 ⌋t(t + 1) are in H . Let H ′ = H

⋃

D\{1t(t +
1), . . . , ⌊ |D|

2 ⌋t(t+ 1)}. By Lemma 4.9 and Remark 4.18, we have |D| ≤ ⌈ t−1
1+β ⌉.

So

|H ′| = |H |+ |D| − ⌊ |D|
2

⌋

≤
(

t

3

)

+

(

t− 1

2

)

− 1

2
⌈ t− 1

1 + β
⌉ − 1 + ⌈ t− 1

1 + β
⌉ − 1

2
⌈ t− 1

1 + β
⌉+ 1

=

(

t

3

)

+

(

t− 1

2

)

.

Note that H ′ contains [t](3). By Remark 2.15, we have Lβ(H
′, ~x) ≤ Lβ(H

′).



HOMOGENEOUS MULTILINEAR FUNCTIONS ON HYPERGRAPH CLIQUES 1065

Next we show that Lβ(H,~x) < Lβ(H
′, ~x). By Remark 3.5(b), x1 = x2 =

· · · = x
⌊ |D|

2
⌋
. If λ(H) < λ([t](3)), then Lβ(H) < Lβ([t]

(3)) and Theorem 4.6

holds. Otherwise we have x1 < xt−2 + xt−1 by Lemma 4.22. Hence

Lβ(H
′, ~x)− Lβ(H,~x) = (1 + β)(λ(D,~x)− ⌊|D|

2
⌋x1xtxt+1)

≥ (1 + β)(|D|xt−2xt−1xt − ⌊|D|
2

⌋x1xtxt+1)

≥ (1 + β)(|D|xt−2xt−1xt − ⌊|D|
2

⌋(xt−2 + xt−1)xtxt+1).

Recalling that x1 ≥ x2 ≥ · · · ≥ xt+1, we have

|D|xt−2xt−1xt − ⌊|D|
2

⌋(xt−2 + xt−1)xtxt+1 > |D|xt−2xt−1xt − |D|xt−2xtxt+1

≥ 0.

Hence Lβ(H,~x) < Lβ(H
′, ~x) ≤ Lβ([t]

(3)) = λ([t](3)). This completes the proof
of Theorem 4.6. �

Proof of Theorem 4.7. Let m and t be a positive integers satisfying
(

t
3

)

≤
m ≤

(

t
3

)

+
(

t−1
2

)

. Let β ≥ t − 4 be a constant. Let H be a 3-graph with

m edges not containing a clique order of t such that Lβ(H) = L
(3)−
(β,m,t). Let

~x = (x1, x2, . . . , xn) be an optimal weighting for H and k be the number of
non-zero weights in ~x. By Lemma 4.21 we can assume thatH is left-compressed
and x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xn = 0. So there is an edge e contain-
ing both k − 1 and k by Lemma 3.2(a). Recalling that H is left-compressed,
we have 1(k − 1)k ∈ E. Let b := max{i : i(k − 1)k ∈ E}. If k ≤ t, then
Lβ(H) < Lβ([t]

(3)). Hence we assume k ≥ t+1. Using Remark 4.18 and Claim
4.12, we have k = t+ 1.

Clearly b ≤ t− 3, otherwise m ≥
(

t
3

)

+
(

t−1
2

)

+ 1 since H is left-compressed

which contradicts to
(

t
3

)

≤ m ≤
(

t
3

)

+
(

t−1
2

)

.

By Lemma 4.14, if b ≤ 3, then Lβ(H) ≤ λ(H) < λ([t](3)). Hence we can
assume 4 ≤ b ≤ t − 3. By Remark 4.18, Lemma 4.9 and 4.11 and similar to
(29), we have

m = |E| ≥
(

t

3

)

+

(

t− 1

2

)

− ⌈ t− 1

1 + β
⌉ − ⌈ b

1 + β
⌉+ b

≥
(

t

3

)

+

(

t− 1

2

)

+ 1

for β ≥ t − 4. This contradicts to m ≤
(

t
3

)

+
(

t−1
2

)

. We complete the proof of
Theorem 4.7. �
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5. Concluding remarks

At this moment, we are not able to extend the arguments in this paper to
verify Conjectures 2.5, 2.10, and 2.11 for r ≥ 4. When r ≥ 4, the computation
is more complex. If there is some technique to overcome this difficulty, then
the idea used in proving Theorems 4.1-4.8. can be used to improve our results
much further.

The potential applications of the results in this paper are in the areas of
polynomial optimization, extremal graph theory, and providing heuristics for
the maximum clique problem which has important applications in different
domains.
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[7] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of the small

Witt-designs, J. Combin. Theory Ser. A 52 (1989), no. 1, 129–147.
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