• Title/Summary/Keyword: Compactor

Search Result 51, Processing Time 0.027 seconds

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

Suggestion of Efficient High Dose Spent Filter Handling and Compaction Equipment

  • Lee, Kyungho;Chung, Sewon;Park, Seonghee;Kim, HuiGyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.243-253
    • /
    • 2022
  • Spent filters with a high radiation dose rate of 2 mSv·hr-1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.

The Scan-Based BIST Architecture for Considering 2-Pattern Test (2-패턴 테스트를 고려한 스캔 기반 BIST 구조)

  • 손윤식;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.45-51
    • /
    • 2003
  • In this paper, a scan-based low power BIST (Built-In Self-Test) architecture is proposed. The proposed architecture is based on STUMPS, which uses a LFSR (Linear Feedback Shift Register) as the test generator, a MISR(Multiple Input Shift Register) as the reponse compactor, and SRL(Shift Register Latch) channels as multiple scan paths. In the proposed BIST a degenerate MISR structure is used for every SRL channel; this offers reduced area overheads and has less impact on performance than the STUMPS techniques. The proposed BIST is designed to support both test-per-clock and test-per-scan techniques, and in test-per-scan the total power consumption of the circuit can be reduced dramatically by suppressing the effects of scan data on the circuits. Results of the experiments on ISCAS 89 benchmark circuits show that this architecture is also suitable for detecting path delay faults, when the hamming distance of the data in the SRL channel is considered.

The Investigation Study of Compaction Density by Waste Composition Change in Landfill Site (매립장의 반입쓰레기 성상변화에 따른 다짐밀도 조사연구)

  • Jung, Byung-Gil;Choi, Young-Ik;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.397-403
    • /
    • 2008
  • The purpose of this study is to investigate weighted compaction density according to a leading density in truck, a compaction density of solid waste and composition ratios of solid waste fur calculation of a capacity of the landfill sites. The experiments for calculations of in-place density at landfill site have been conducted in S landfill site at B City. The size of vessel for measuring the compaction density was $1m^3(1m{\times}1m{\times}1m)$. The experiment tests have been carried out methods (1 time for bulldozer and 4 times for compactor) that do contain all of specification at the landfill site. Average of the loading density at the landfill site was $0.264\;ton/m^3$ ($0.113{\sim}0.487\;ton/m^3$). When the loading density for each compositions was compared, the composition of the highest average loading density ($0.474\;ton/m^3$) was miscellaneous wastes. The composition of the lowest average loading density ($0.120 ton/m^3$) was general solid waste. The reported results indicated that the compaction density at the landfill site was $0.538\;ton/m^3$, which was calculated with weighted incoming ratios of compositions. The ranges of the density for each composition were from $0.021\;ton/m^3$ to $0.221\;ton/m^3$. When the compaction density for each composition was compared, the composition with the highest average compaction density ($0.221\;ton/m^3$) was miscellaneous wastes. The composition with the lowest average compaction density ($0.021\;ton/m^3$) was general solid wastes.

A Study on the Determination of Density and Moisture Content of Asphalt Concrete Pavement and Subgrade Using Nuclear Density Meter (방사선측정치를 이용한 아스콘 포장 및 노상의 현장밀도와 함수비 측정에 관한 연구)

  • 진성기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.103-116
    • /
    • 1994
  • The objective of this study was to determine the criteria for density and moisture content measurements made with a nuclear density meter on common materials in the construction field. The study also sought to test a full-type nuclear density meter in controlling the density of overlay layers( 2.5~5.0cm). In order to determine the accuracy and reliablility of nuclear guage measurements made on construction materials, laboratory and field tests were conducted. Wooden blocks( 65 x 45 ${\times}$ 50 cm) and a special steel compactor( 4.7kg) were constructed in order to carry out tests which were conducted on three different materials; coarse gramed soil, fine grained soil, and AC material. Throughout all laboratory and field tests, the nuclear density and moisture content were determined using Humboldt 5OOLP nuclear gauge. The tests on subgrade material entailed obtaining density measurements by means of both the sand replacement method and the nuclear density meter. The results of the sand replacement method were then compared to the readings recorded bu the meter. As in the subgrade material tests, density measurements made during AC pavement tests were also determined using the unclear meter in addition to a second means; through the core method. The meter readings and core densties were compared as was done in the tests on subgrade materials. The correlation between the results of the sand replacement test( also, the core method) and meter readings on subgrade material was then determined. Sirnilarly, the observed results were then analyzed through linear regression. The tests to determine thin-lift density by means of a full-type nuclear density meter also conducted on the overlay layers( about 4. 8cm thickness) above AC pavements at road construction sities in Korea.

  • PDF

Permanent Deformation Properties of Porous Pavement Modified by Pyrolysis Carbon Black (열분해 카본블랙을 이용한 배수성 아스팔트 혼합물의 소성변형 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3888-3893
    • /
    • 2014
  • The number of waste tires is increasing. One effective recycling method is the pyrolysis of waste tires. Using the pyrolyzed carbon black from waste tires, the characteristics of permanent deformation for PA-13mm porous mixture were evaluated. The confining pressure of 138 kPa and deviatoric stress of 551 kPa were adopted. The testing temperature was $45^{\circ}$ and 50 gyrations of the gyratory compactor was used to simulate the medium traffic level. The mixture modified by 10% PCB showed the largest Marshall Stability of 3.41 kN. The stability of the mixtures with PCB was 50% higher than that of mixture without PCB. The limited laboratory test showed that the use of PCB in a porous pavement decreases the permanent deformation and will be an effective alternative method to reducing the permanent deformation of a porous pavement.

Application of Recycled Aggregate in Job site as Anti-freezing and Lean Concrete Base Materials (현장파쇄 재생골재의 동상방지층 및 빈배합 콘크리트 기층 시험시공연구)

  • Kim, Jin-Cheol;Shim, Jae-Won;Cho, Kyou-Sung;Choi, Go-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.25-33
    • /
    • 2004
  • The waste concrete produced by the process of the highway construction and management, has been crushed in-situ, and the waste aggregate has been experimentally used for anti-freezing layer and lean concrete. After testing the bearing capacity on anti-freezing layer, it was found that when the waste aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2$\sim$20mm sieve increased by 5$\sim$13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. The compressive strength of lean concrete using recycled aggregate was 71$\sim$85% of the natural coarce aggregate made, but nevertheless the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, $57.5kgf/cm^2$.

  • PDF

Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS

  • Vahidi, Ebrahim Khalilzadeh;Malekabadi, Maryam Mokhtari;Rezaei, Abbas;Roshani, Mohammad Mahdi;Roshani, Gholam Hossein
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2017
  • In recent years, the use of supplementary cementing materials, especially in addition to concrete, has been the subject of many researches. Rice husk ash (RHA) is one of these materials that in this research, is added to the roller compacted concrete as one of the pozzolanic materials. This paper evaluates how different contents of RHA added to the roller compacted concrete pavement specimens, can influence on the strength and permeability. The results are compared to the control samples and determined optimal level of RHA replacement. As it was expected, RHA as supplementary cementitious materials, improved mechanical properties of roller compacted concrete pavement (RCCP). Also, the application of adaptive neuro-fuzzy inference system (ANFIS) in predicting the permeability and compressive strength is investigated. The obtained results shows that the predicted value by this model is in good agreement with the experimental, which shows the proposed ANFIS model is a useful, reliable, fast and cheap tool to predict the permeability and compressive strength. A mean relative error percentage (MRE %) less than 1.1% is obtained for the proposed ANFIS model. Also, the test results and performed modeling show that the optimal value for obtaining the maximum compressive strength and minimum permeability is offered by substituting 9% and 18% of the cement by RHA, respectively.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

Soil Stiffness Evaluation using Vibration Frequency (진동주파수 해석을 통한 지반강성 평가방법)

  • Kim, Ju-Hyong;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.987-992
    • /
    • 2009
  • Continuous Compaction Control is a new cutting edge technique in United States, Japan and European construction market that uses an instrumented compactor to measure soil stiffness in real time usually with vehicle tracking system such as Global Navigation Satellite System (GNSS). In this study, soil stiffness was evaluated by adapting Fourier transforming technique with acceleration data obtained from accelerometers used as a continuous compaction control instrument. The soil stiffness obtained by accelerometers gave analogous results with reference results such as dry density, elastic modulus obtained from Geogauge and Light falling deflectometer.

  • PDF