• Title/Summary/Keyword: Common-mode noise

Search Result 136, Processing Time 0.037 seconds

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

A New PWM Method for Conducted EMI Reduction in Inverter fed Motor Drive System (인버터 구동 시스템에서의 EMI 저감을 위한 새로운 PWM 구현)

  • Kun Hahm Nyon;Kim Lee-Hun;Jun Ki-Young;Chun Kwang-Su;Won Chung-Yuen;Han Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.384-388
    • /
    • 2004
  • High frequency common mode voltage produced by power inverters are a major cause of conducted EMI, creating motor ground currents, bearing currents and other harmful by products. This paper focuses on a new SVPWM method with random PWM injection to reduce conducted EMI noise. A New PWM technique associated with the common mode voltage can be significantly reducing and contributes to mitigate. The common mode voltage to $50\%$ in comparison with that for conventional SVPWM technique. Validation of the theory and reduction methods are then performed experiment ally based on an induction motor drive.

  • PDF

A Study on Causes Generating Induced Noise Voltage on Telecommunications Cables Near to High-speed Rails (고속철도에 의한 통신회선 잡음전압 발생 원인 고찰)

  • Yeo, Sang-Kun;Park, Chan-Won;Kim, Chong-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2008
  • The study aims at verifying no generation of electrical power induced noise voltage on telecommunications lineside cable by analyzing the practical findings of noise voltage produced at the telecommunication lines in the vicinity of electrified high-speed railways like KTX, while proposing to make the current standard measurement circuit along with its measuring conditions revised in compliance with international ITU-T recommendations by identifiably finding out the present problems in balance level measuring instruments as well as their errors in the measurement method now applicable by local telecommunications companies and the Radio Research Laboratory.

Development of the object transport system using 2-Mode ultrasonic wave excitation (2-Mode초음파 여기 물체 이송 시스템 개발에 관한 연구)

  • 정상화;신병수;차경래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.956-959
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the common system is required. The common systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system solve these problem. In this paper the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave get orators are performed. The effect of transporting speed according to the change of weight and amplification voltage are verified. In addition, the system performance for actual use is evaluated.

  • PDF

Enhanced Common-Mode Noise Rejection Method Based on Impedance Mismatching Compensation for Wireless Capsule Endoscopy Systems

  • Hwang, Won-Jun;Kim, Ki-Yun;Choi, Hyung-Jin
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.637-645
    • /
    • 2015
  • Common-mode noise (CMN) is an unresolved problem in wireless capsule endoscopy (WCE) systems. In a WCE system, CMN originates from various electric currents found within the human body or external interference sources and causes critical demodulation performance degradation. The differential operation, a typical method for the removal of CMN rejection, can remove CMN by subtracting two signals simultaneously received by two reception sensors attached to a human body. However, when there is impedance mismatching between the two reception sensors, the differential operation method cannot completely remove CMN. Therefore, to overcome this problem, we propose an enhanced CMN rejection method. The proposed method performs not only subtraction but also addition between two received signals. Then a CMN ratio can be estimated by sufficient accumulation of division operation outcomes between the subtraction and addition outputs during the guard period. Finally, we can reject the residual CMN by combining the subtraction and addition outputs.

Technique of Common Mode Voltage and Conducted EMI Reduction using Nonzero-vector State in SVPWM Method (SVPWM방식에서의 영벡터 제거에 의한 커먼모드 전압 및 전도성 EMI 저감 기법)

  • Hahm Nyon-Kun;Kim Lee-Hun;Jeon Kee-Young;Chun Kwang-Su;Won Chung-Yuen;Han Kyung-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.507-515
    • /
    • 2004
  • With the advent of fast power devices, the high dv/dt voltage produced by PWM inverts have been found to cause EMI noise, shaft voltage and bearing current. This paper describes the application of newly developed Conducted EMI reduction SVPWM technique in induction motor drives. The newly developed common mode voltage reduction SVPWM technique don't use any zero-vector states for inverter control, hence it can restrict the common mode voltage more than conventional PWM technique. The validity of the proposed technique by software approach is verified through simulation and experimental results.

DC-Link Voltage Balance Control Using Fourth-Phase for 3-Phase 3-Level NPC PWM Converters with Common-Mode Voltage Reduction Technique

  • Jung, Jun-Hyung;Park, Jung-Hoon;Kim, Jang-Mok;Son, Yung-Deug
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.108-118
    • /
    • 2019
  • This paper proposes a DC-link voltage balance controller using the fourth-phase of a three-level neutral-point clamped (NPC) PWM converter with medium vector selection (MVS) PWM for common-mode voltage reduction. MVS PWM makes the voltage reference by synthesizing the voltage vectors that cannot generate common-mode voltage. This PWM method is effective for reducing the EMI noise emitted from converter systems. However, the DC-link voltage imbalance problem is caused by the use of limited voltage vectors. Therefore, in this paper, the effect of MVS PWM on the DC-link voltage of a three-level NPC converter is analyzed. Then a proportional-derivative (PD) controller for the DC-link voltage balance is designed from the DC-link modeling. In addition, feedforward compensation of the neutral point current is included in the proposed PD controller. The effectiveness of the proposed controller is verified by experimental results.

EMI Noise Source Reduction of Single-Ended Isolated Converters Using Secondary Resonance Technique

  • Chen, Zhangyong;Chen, Yong;Chen, Qiang;Jiang, Wei;Zhong, Rongqiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.403-412
    • /
    • 2019
  • Aiming at the problems of large dv/dt and di/dt in traditional single-ended converters and high electromagnetic interference (EMI) noise levels, a single-ended isolated converter using the secondary resonance technique is proposed in this paper. In the proposed converter, the voltage stress of the main power switch can be reduced and the voltage across the output diode is clamped to the output voltage when compared to the conventional flyback converter. In addition, the peak current stress through the main power switch can be decreased and zero current switching (ZCS) of the output diode can be achieved through the resonance technique. Moreover, the EMI noise coupling path and an equivalent model of the proposed converter topology are presented through the operational principle of the proposed converter. Analysis results indicate that the common mode (CM) EMI noise and the differential mode (DM) EMI noise of such a converter are deduced since the frequency spectra of the equivalent controlled voltage sources and controlled current source are decreased when compared with the traditional flyback converter. Furthermore, appropriate parameter selection of the resonant circuit network can increase the equivalent impedance in the EMI coupling path in the low frequency range, which further reduces the common mode interference. Finally, a simulation model and a 60W experimental prototype of the proposed converter are built and tested. Experimental results verify the theoretical analysis.

Modeling and Filter Design through Analysis of Conducted EMI in Switching Power Converters

  • Vimala, R.;Baskaran, K.;Aravind Britto, K.R.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.632-642
    • /
    • 2012
  • This paper presents a filter analysis of conducted Electro-Magnetic Interference (EMI) in switching power converters (SPC) based on noise impedances. The EMI characteristics of SPC can be analytically deduced from a circuit theoretical viewpoint. The analytical noise model is investigated to get a full understanding of the EMI mechanism. It is shown that with suitable and justified model, filters pertinent to EMI noise is investigated. The EMI noise is identified by time domain measurements associated with an isolated half-bridge ac-dc converter. Practical filters like LC filter, ${\pi}$ filter and complete EMI filters are investigated. The proposed analysis and results can provide a guideline for improving the effectiveness of filtering schemes in SPC. Experimental results are also included to verify the validity of the proposed method. The results obtained satisfy the Federal Communications Commission (FCC) class A and class B regulations.

A Study on the Injection Rate Observer of the Piezo-actuated and Solenoid-operated Injectors for CRDI Diesel Engines (직분식 커먼레일 디젤엔진의 피에조 인젝터와 솔레노이드 인젝터의 연료분사율 추정)

  • Sa, Jong-Seong;Chung, Nam-Hoon;SunWoo, Myoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.52-59
    • /
    • 2007
  • Fuel injection system greatly affects the performance of a direct injection diesel engine. A common rail injection system was introduced to satisfy the stringent emission standards, low fuel consumption, and low noise in recent years. The performance of a common-rail fuel injection system is strongly influenced by the injector characteristics. The common rail injector has evolved in order to improve its injection performance. The piezo-actuated injector is more suitable for common rail injection system due to its fast response and is expected to replace current solenoid-operated injector. In this study, nonlinear mathematical models are proposed for the solenoid-operated and the piezo-actuated injectors for control applications. Based on these models, the injection rate, which is one of the most important factors for the injection characteristics, is estimated using sliding mode observer. The simulation results and the experimental data show that the proposed sliding mode observers can effectively estimate the injection timing and the injection rate for both common-rail injectors.