• Title/Summary/Keyword: Common mode 전압

Search Result 84, Processing Time 0.029 seconds

A 13-Gbps Low-swing Low-power Near-ground Signaling Transceiver (13-Gbps 저스윙 저전력 니어-그라운드 시그널링 트랜시버)

  • Ku, Jahyun;Bae, Bongho;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • A low-swing differential near-ground signaling (NGS) transceiver for low-power high-speed mobile I/O interface is presented. The proposed transmitter adopts an on-chip regulated programmable-swing voltage-mode driver and a pre-driver with asymmetric rising/falling time. The proposed receiver utilizes a new multiple gain-path differential amplifier with feed-forward capacitors that boost high-frequency gain. Also, the receiver incorporates a new adaptive bias generator to compensate the input common-mode variation due to the variable output swing of the transmitter and to minimize the current mismatch of the receiver's input stage amplifier. The use of the new simple and effective impedance matching techniques applied in the transmitter and receiver results in good signal integrity and high power efficiency. The proposed transceiver designed in a 65-nm CMOS technology achieves a data rate of 13 Gbps/channel and 0.3 pJ/bit (= 0.3 mW/Gbps) high power efficiency over a 10 cm FR4 printed circuit board.

Development of a High-Performance Bipolar EEG Amplifier for CSA System (CSA 시스템을 위한 양극 뇌파증폭기의 개발)

  • 유선국;김창현;김선호;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • When we want to observe and record a patient's EEG in an operating room, the operation of electrosurgical unit(ESU) causes undesirable artifacts with high frequency and high voltage. These artifacts make the amplifiers of the conventional EEG system saturated and prevent the system from measuring the EEG signal. This paper describes a high-performance bipolar EEG amplifier for a CSA (compressed spectral array ) system with reduced ESU artifacts. The designed EEG amplifier uses a balanced filter to reduce the ESU artifacts, and isolates the power supply and the signal source of the preamplifier from the ground to cut off the current from the ESU to the amplifier ground. To cancel the common mode noise in high frequency, a high CMRR(common mode rejection ratio) diffferential amplifier is used. Since the developed bipolar EEG amplifier shows high gain, low noise, high CMRR, high input impedance, and low thermal drift, it is possible to observe and record more clean EEG signals in spite of ESU operation. Therefore the amplifier may be applicable to a high-fidelity CSA system.

  • PDF

Design of Low-Power and High-Speed Receiver for a Mobile Display Digital Interface (모바일 디스플레이 디지털 인터페이스용 저전력 고속 수신기 회로의 설계)

  • Lee, Cheon-Hyo;Kim, Jeong-Hoon;Lee, Jae-Hyung;Jin, Liyan;Yin, Yong-Hu;Jang, Ji-Hye;Kang, Min-Cheol;Li, Long-Zhen;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1379-1385
    • /
    • 2009
  • We propose a low-power and high-speed client receiver for a mobile display digital interface (MDDI) newly in this paper. The low-power receiver is designed such that bias currents, sink and source currents, are insensitive to variations of power supply, process, temperature, and common-mode input voltage (VCM) and is able to operate at a rate of 450Mbps or above under the conditions of a power supply range of 3.0 to 3.6Vand a temperature range of -40 to 85$^{\circ}$C. And it is confirmed by a simulation result that the current dissipation is less than 500${\mu}$A. A test chip is manufactured with the Magna chip 0.35${\mu}$m CMOS process. When a test was done, the data receiver and data recovery circuits are functioning normally.

Multi-channel Transimpedance Amplifier Arrays in Short-Range LADAR Systems for Unmanned Vehicles (무인차량용 단거리 라이다 시스템을 위한 멀티채널 트랜스임피던스 증폭기 어레이)

  • Jang, Young Min;Kim, Seung Hoon;Cho, Sang Bock;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.40-48
    • /
    • 2013
  • This paper presents multi-channel transimpedance amplifier(TIA) arrays in short-range LADAR systems for unmanned vehicles, by using a 0.18um CMOS technology. Two $4{\times}4$ channel TIA arrays including a voltage-mode INV-TIA and a current-mode CG-TIA are introduced. First, the INV-TIA consists of a inverter stage with a feedback resistor and a CML output buffer with virtual ground so as to achieve low noise, low power, easy current control for gain and impedance. Second, the CG-TIA utilizes a bias from on-chip bandgap reference and exploits a source-follower for high-frequency peaking, yielding 1.26 times smaller chip area per channel than INV-TIA. Post-layout simulations demonstrate that the INV-TIA achieves 57.5-dB${\Omega}$ transimpedance gain, 340-MHz bandwidth, 3.7-pA/sqrt(Hz) average noise current spectral density, and 2.84mW power dissipation, whereas the CG-TIA obtains 54.5-dB${\Omega}$ transimpedance gain, 360-MHz bandwidth, 9.17-pA/sqrt(Hz) average noise current spectral density, and 4.24mW power dissipation. Yet, the pulse simulations reveal that the CG-TIA array shows better output pulses in the range of 200-500-Mb/s operations.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

Design of 24-GHz Power Amplifier for Automotive Collision Avoidance Radars (차량 추돌 방지 레이더용 24-GHz 전력 증폭기 설계)

  • Noh, Seok-Ho;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.117-122
    • /
    • 2016
  • In this paper, we propose 24-GHz CMOS radio frequency (RF) power amplifier for short-range automotive collision avoidance radars. This circuit contains common source stage with inter-stages conjugate matching circuit as a class-A mode amplifier. The proposed circuit is designed using TSMC $0.13-{\mu}m$ mixed signal/RF CMOS process ($f_T/f_{MAX}=120/140GHz$). It operates at the supply voltage of 2V, and it is designed to have high power gain, low insertion loss and low noise figure in the low supply voltage. To reduce total chip area, the circuit used transmission lines instead of the bulky real inductor. The designed CMOS power amplifier showed the smallest chip size of $0.1mm^2$, the lowest power consumption of 40mW, the highest power gain of 26.5dB, the highest saturated output power of 19.2dBm and the highest maximum power-added efficiency of 17.2% as compared to recently reported results.

Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault (최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

A Study on Development of EMC Filter for Power Lime in Break-box (인입선 Break-box 내의 EMC 대책용 필터 개발에 관한 연구)

  • 배대환;김동일;배재영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.245-250
    • /
    • 2001
  • Since the most of malfunctions in the industrial equipment controlled by processors is occurred by the Electrical Fast Transient(EFT), the International Electrotechnical Commission(IEC) prepared the dummy signal to test the immunity level of the equipments. In this paper, we designed a new EMC fitter for power line in break-box, which consist of the feed-through capacitor and ferrite materials with high permeability, which was wound or inserted, in the second layer of the power cable in order to increase common mode inductance. We have obtained a excellent insertion loss characteristics over wide frequency band from 10 MHz up to 1.5 GHz. It is expected that the new EMC filter could be effectively used for industrial, MIL, and medical equipments to reduce a malfunctions and be suitable for IEC 61000-4-4.

  • PDF

Electrical Noise Reduction in the Electromagnetic Shaker System using a Class-D Amplifier (Class-D 증폭기를 사용한 가진기 시스템의 전기적 잡음 감소)

  • 윤을재;김인식;한태균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-22
    • /
    • 1999
  • Operation of an electromagnetic shaker system using a Class-D amplifier may cause unacceptable electromagnetic interference to another electronic system, requiring the user to take whatever steps are necessary to correct the interference. A differential amplifier in a Class-D amplifier is used to decrease the effect of a common-mode noise voltage in a shaker system. To prevent a ground loop, a transformer is inserted in another shaker system. These methods show reduction of the unwanted vibration which has occurred before. A transformer in a charge amplifier was used to prevent a ground loop in a shaker system using a Class-AB amplifier a few years ago, but it was susceptible of noise in a shaker system using a Class-D amplifier. Hence we corrected a ground loop between a charge amplifier and a vibration control/analysis system without a transformer. The usefulness of this approach is illustrated by the results of experiments.

  • PDF

The Effect of Ground Plane Gap on the Radiated Emission (PCB 접지면 갭이 불요전자파 방사에 미치는 영향)

  • 하재경;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.648-658
    • /
    • 1998
  • In this paper, the effect of the gap in the ground plane on the electromagnetic interference (EMI) is analyzed quantitatively. Because of a lot of advantages compared to other numerical techniques, the FDTD (finite difference time domain) is applied to the EMI effect modeling. The analyzed model is the simplified PCB (printed circuit board) which has a microstrip and ground plane. The inductance induced by the gap is modeled and calculated by gridding the whole PCB based on the FDTD algorithm. When external cables are attached to the PCB, the common-mode current is induced along the attached cable and the resulting electric field strength is calculated and presented along with the FCC and CISPR EMI limits. The results show that the radiated field strength highly depends on the size of the ground plane gap. The numerical simulation results can be used as a reference in the practical PCB design with the ground plane gap.

  • PDF