• Title/Summary/Keyword: Combined Loads

Search Result 483, Processing Time 0.025 seconds

Elastica of Cantilever Column with Constant Volume Subjected to Combined Loads (조합하중을 받는 일정체적 캔틸레버 기둥의 정확탄성곡선)

  • Lee, Byoung-Koo;Li, Guangfan;Yoon, Hee-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.581-592
    • /
    • 2007
  • This paper deals with the elastica of deflected cantilever column with the constant volume. The columns are subjected to combined loads consisted of an axial compressive load and a couple moment at the free end. Differential equations governing the elastica of such column are derived, in which both the effects of taper type and shear deformation are included. Three kinds of taper types are considered: linear, parabolic and sinusoidal tapers. Differential equations are solved numerically to obtain the elastica of objective columns. The effects of various system parameters on the elastica are investigated extensively. Experimental studies were carried out in order to verify the theoretical results of non-linear behavior of the elasticas.

A Study on the Stability Boundaries for Single Layer Latticed Domes and Arch under Combined Loads (조합하중를 받는 단층 래티스 돔과 아치의 안정경계에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kap-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.103-109
    • /
    • 2004
  • The lowest load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to be analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter. In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arch were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions (열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가)

  • Oh, Chang-Young;Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.609-617
    • /
    • 2011
  • There is a trend towards the progressive use of higher operating temperatures and stresses to achieve improved efficiencies in power-generation equipment. It is important to perform the crack assessment under hightemperature and high-pressure conditions. The C(t)-integral is a key parameter in crack assessment for transient creep states. The estimation of the C(t)-integral is complex when considering the mechanical and thermal loads simultaneously. In this paper, we study estimation of C(t)-integral under combined mechanical and thermal load depending on loading conditions.

Evaluation of the Probability of the Steel Beam to Collapse in Accordance with the Normal Distribution Load (철골보의 정규하중분포에 따른 파손확률 평가)

  • Song, Chang-Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • Based on the reliability theory, the risk assessment of steel beams is performed by the determination of failure probability. In the calculation, bending, shearing and combined (bending + shearing) modes are examined. The resistance and the loads on the beam are assumed to be normal distribution. To investigate the failure probability changes, total load applied at the mid span of beam is divided into 1 to 1 and 1 to 2 ratio and then these divided loads are placed on the trisected points on beam. The change of boundary conditions at beam ends are also included in the investigation. It shows that failure is governed by the combined mode for the present beams and the second order bound analysis of failure probability is not crucial. On the whole failure probability decreases with increasing end restraints at the beam ends with some exception.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads

  • Ngo, Van Minh;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • In this work we provide the theoretical formulation, discrete approximation and solution algorithm for instability problems combing geometric instability at large displacements and material instability due to softening under combined thermo-mechanical extreme loads. While the proposed approach and its implementation are sufficiently general to apply to vast majority of structural mechanics models, more detailed developments are provided for truss-bar model. Several numerical simulations are presented in order to illustrate a very satisfying performance of the proposed methodology.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings (원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.