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Abstract

Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in 

yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum 

theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters’ yaw correction, 

Buhl’s wake correction, Prandtl’s tip loss model, Du and Selig’s three-dimensional (3-D) stall delay model, etc. Changes of 

the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were 

compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the 

classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of 

additional corrections and models stated above. A successive under-relaxation technique was developed and applied to 

prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the 

specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted 

data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental 

data.
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1. Introduction

The total amount of power of the cumulative installations 

of offshore wind turbines in the world increased to 8,759 MW 

in 2014, and 91 % of all offshore wind turbines are located 

in European waters [1]. Although most substructures until 

now are mono-pile types, the suction bucket foundation 

has attracted the attention of many utility operators because 

its installation is faster and its cost is lower than those of 

conventional foundations. In particular the suction bucket 

foundation can innovatively reduce the noise impact on 

marine animals and the environment. Recently the suction 

bucket type was adopted as foundations for the meteorological 

mast for HeMosu-2 and the 2.5 GW class offshore wind farm 

project southwest of the Korean peninsula [2]. Basically, 

suction buckets are a foundation structure that allows very 

weak ocean floor soils to provide the necessary support 

of extremely heavy superstructure loads. In design stage 

engineers are particularly concerned for the safe operation of 

the wind turbine system while maintaining vertical alignment 

against the aerodynamic loads in an extreme condition. 

Therefore, the load analysis for the wind turbine system 
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based on a design regulation such as IEC 61400 [3] becomes 

indispensable to overcome the excessive aerodynamic and 

hydrodynamic forces acting on the support structure. From 

the above point of view, both thrust and overturning moment 

for the large-scaled horizontal axis wind turbine (HAWT) 

installed at an offshore wind farm are very significant 

parameters in the design of the supporting structure of the 

wind turbine system. 

Most comprehensive codes such as FAST [4] for the wind 

turbine system have utilized the blade element momentum 

theorem (BEMT) for aerodynamic loads analysis in 

complicated flow condition including flow direction and flow 

speed changes. The considerable advantage of the BEMT is 

fast evaluation of the aerodynamic performance, while using 

reliable airfoil data from wind tunnel experiments. Thus, it 

can effectively provide useful aerodynamic data for analysis 

of solid structures, system dynamics, and control purposes 

in the design stage. Since axisymmetric assumption of the 

classical BEMT [5-6] for a wind turbine system without yaw 

is inapplicable to a yawed wind turbine system, computing 

procedure should be modified based on appropriate 

aerodynamic theories. One of the main causes of the 

complicated flow condition is the yaw error of the wind 

turbine rotor. The computing procedure for the classical 

BEMT without yaw error consists of an inner iteration loop 

for convergence and an outer repetition loop for blade 

elements [7]. However, the modified BEMT for the yaw 

error case requires an additional outermost iteration for the 

varying azimuth angle of the blade, and more aerodynamic 

corrections and models should be complemented in the flow 

chart. Many research groups have developed modified BEMT 

programs, and have been engaged in the ‘Blind Comparison’ 

for a specified wind turbine to enhance the performance of 

their developed code. For a typical case, National Renewable 

Energy Laboratory (NREL) organized a ‘Blind Comparison’ 

for wind turbine research institutes in the fall of 2000. After 

carrying out the blind test they concluded that the main 

differences among the different design codes depend on the 

airfoil coefficients table used and on the correction models 

used for rotational effects [8, 9].

The main purpose of this study is to develop an 

aerodynamic analysis code for a horizontal axis wind 

turbine blade with yaw error based on the modified BEMT. 

The aerodynamic loads and inflow angles of the predicted 

data for the NREL Phase VI rotor in yawed condition will be 

compared with those of the experimental data to verify the 

developed program. Based on this validation, the developed 

program will be joined with other interdisciplinary research 

routines such as aeroelasticity, and dynamic control for a 

comprehensive code for the wind turbine system, which will 

be supervised by Korea Electric Power Research Institute.

2. ��Aerodynamic Models and Numerical 	  
Procedure

2.1 Classical Blade Element Momentum Theorem

Blade element momentum theorem (BEMT) has been 

widely used for shape design and performance analysis 

of wind turbine blades because of its fast calculation 

and reasonable results. In particular, it can offer various 

engineering data for structural and dynamic problems in the 

design stage of the wind turbine system, and has consequently 

been adopted in most of the comprehensive codes such as 

FAST, BLADED, and PHATAS. Basic assumptions for the 

blade element momentum theorem include steady, one-

dimensional (1-D), axisymmetric, inviscid, incompressible, 

irrotational, and uniform. Blade element momentum 

theorem combines two existing theories: the blade element 

theory for a two-dimensional (2-D) blade section and the 

1-D momentum theory around the rotor. The blade element 

theory divides the blade into several small elements, and 

obtains the thrust and torque from the experimental data of 

the airfoil at a given angle of attack. The thrust and torque 

can also be calculated using the 1-D momentum theory with 

axial and tangential induction factors. If the two equations 

from each theory for thrust are made equal, an expression 

for the axial induction factor a is obtained:
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where w is the flow speed along the tangential direction at rotor plane, and  is the angular speed of 

the wind turbine rotor. 

The trailing vortices generated from the blade tips induce an axial wind component opposite to the 

free stream direction and a tangential direction opposite to the rotating direction. Fig. 1 shows the 

velocity triangle reflecting the induced velocities for a section of the blade. From the definition of 

axial and tangential induction factors and the velocity triangle, the flow angle can be directly derived 
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where w is the flow speed along the tangential direction at 

rotor plane, and Ω is the angular speed of the wind turbine 
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rotor.

The trailing vortices generated from the blade tips induce 

an axial wind component opposite to the free stream 

direction and a tangential direction opposite to the rotating 

direction. Fig. 1 shows the velocity triangle reflecting the 

induced velocities for a section of the blade. From the 

definition of axial and tangential induction factors and the 

velocity triangle, the flow angle can be directly derived from 

Fig. 1 as follows:
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Some corrections and modifications have been continuously applied to the original theorem to 

solve the complicated flow cases which oppose the basic assumptions on the classical BEMT. For 

example, while axisymmetric flow with no yaw error is one of the basic assumptions, most of the 
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these problems, the classical BEMT should be corrected to reflect the yaw angle effects. The 

following sections investigate compensation methods for the classical BEMT.  
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energy is essentially lost. The generated lift at the tip of the blade approaches zero; thus, the tip loss 

model should be adopted to compensate the deficiency in the classical BEMT. This study uses the 

Prandtl’s tip loss model [5]. A tip loss factor F was introduced to correct the distribution of power 

along the blade span as follows: 

R HF f f , (6)

and

12 cos ( )Rg
Rf e


 ,  (7) 

12 cos ( )Hg
Hf e


 ,  (8) 

2 sinR
B R rg

r 


 ,  (9) 

2 sin
H

H
H

r rBg
r 


 , (10) 

where B is the number of blades, R is the overall radius of the rotor, r is the local radius, and Hr  is 

(9)

19 

W

(1 ')r a 

(1 )V a

 


Fig. 1. Flow velocity diagram at an annulus in an HAWT rotor disc 

Fig. 1. ��Flow velocity diagram at an annulus in an HAWT rotor disc

(157~166)16-035.indd   159 2016-07-05   오후 8:02:09



DOI: http://dx.doi.org/10.5139/IJASS.2016.17.2.157 160

Int’l J. of Aeronautical & Space Sci. 17(2), 157–166 (2016)

6 

state is very close to those of a flat plate, regardless of airfoil shapes. Thus, most of the angle of attack 

in the wind tunnel experiment is limited to the approximate range of -30º ~ +30º. The entire range of 

the airfoil data, however, is still necessary to predict the aerodynamic performance of the blade 

numerically without any iteration problems. To overcome this problem a number of polar 

extrapolations of the airfoil data in the limited range of the angle of attack have been proposed. Of 

these, the Viterna-Corrigan extrapolation of the airfoil data is adopted for this study [12]. 

2.3 Other Corrections 

The physical mechanism for generating lift on the blade is the presence of high pressure on the 

windward surface and a low pressure on the leeward surface of the blade. The flow pattern due to this 

pressure imbalance near the wing tip tends to create rotational flow around the tip, and generates high 

strength of the trailing vortices. These tip vortices contain a large amount of translational and 

rotational kinetic energy. Since this energy of the vortices serves no useful power generation, the 

energy is essentially lost. The generated lift at the tip of the blade approaches zero; thus, the tip loss 

model should be adopted to compensate the deficiency in the classical BEMT. This study uses the 

Prandtl’s tip loss model [5]. A tip loss factor F was introduced to correct the distribution of power 

along the blade span as follows: 

R HF f f , (6)

and

12 cos ( )Rg
Rf e


 ,  (7) 

12 cos ( )Hg
Hf e


 ,  (8) 

2 sinR
B R rg

r 


 ,  (9) 

2 sin
H

H
H

r rBg
r 


 , (10) 

where B is the number of blades, R is the overall radius of the rotor, r is the local radius, and Hr  is 

(10)

where B is the number of blades, R is the overall radius of 

the rotor, r is the local radius, and rH is the hub radius. The 

corrected influence factors for Eqs. (1) and (4) can then be 

modified as follows:

7 

the hub radius. The corrected influence factors for Eqs. (1) and (4) can then be modified as follows: 

124 sin1
[ cos sin ]l d

Fa
c c


  


 

   
, (11) 

1
4 sin cos' 1

[ sin cos ]l d

Fa
c c

 
  


 

    
. (12) 
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shows very poor agreement for operation in a high induction state. Glauert, Wilson et al. [6] proposed 

empirical forms that fit with the measured data. Recently Buhl investigated the mismatch between the 

classical curve and the empirical curve, and derived of a new curve that accounts for the tip and hub 
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induction factor [15]. In Fig. 2 the three expressions for the 

thrust coefficient are plotted for F = 1.
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incoming wind direction during normal operation. In this 

case, the flow angle can be changed while considering the 

yaw angle:
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where  and  denote the yaw angle and azimuth angle of the blade, respectively. Thus, instead of Eq. 

(5), Eq. (16) should be used to calculate the flow angle for the yawed condition. Basically the 

classical blade element momentum theorem is obtained from the axisymmetric condition in which the 
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where  represents the wake skew angle proposed by Burton et al. [18]. 

2.4 Numerical Procedure 
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2.4 Numerical Procedure

The numerical procedure is shown in Fig. 3, including 

the additional corrections to compensate for the classical 

BEMT for the yawed condition. It has three major loops: the 

inner-most iteration for flow angle at the specified blade 

element, the repetition for the blade element from hub to tip, 

and the outer-most repetition for the azimuth angle. During 

iterative calculation in the inner-most loop, an extrapolated 

aerodynamic table of the S809 airfoil is applied to extract the 

corresponding lift, drag, and moment coefficients at a given 

angle of attack. Occasionally, the iteration process failed 

due to an abrupt change of the predicted value. A successive 

under-relaxation technique is thus proposed and applied 

to prevent a possible failure during the iteration process as 

follows:
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where 1k   and k represent the new and previous values of the inflow angle, respectively,  is the 

relaxation factor, and 1k  denotes the newly calculated value to be corrected. In this study,  = 0.1 

is used with no divergence problem. The under-relaxation technique leads to stable convergence, 
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3. Results and Discussion
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model test was performed in the 24.4 m  36.6 m wind tunnel of the NASA Ames research center, and 

pressure distributions were measured at r/R = 0.3, 0.47, 0.63, 0.8, and 0.95 radial positions. The 

measurements at 30º yaw were performed for tunnel speeds ranging between 5 m/s and 17 m/s. 

Measurements using the NASA-Ames wind tunnel are very suitable for validating large size yaw 

models. The S809 airfoil is a 21% thickness laminar-flow airfoil with a sharp trailing edge for the 

horizontal axis wind turbine. The wind tunnel data of the S809 airfoil, previously tested at the Ohio 

State University [20], will be used for aerodynamic performance analysis with a modified BEMT. Fig. 

4 shows the S809 airfoil shape and distribution of drag, lift, and moment coefficients with respect to 

angles of attack at the Reynolds number of 1.5106. The specifications and operating conditions for 

the NREL Phase VI rotor are summarized in Table 1. In this study, the predicted axial loads and 

inflow angles of attack for the NREL Phase VI rotor in 30º yawed condition will be compared with 

measured data at two selected tunnel speeds of 10 m/s and 15 m/s.  

The variation of angles of attack according to azimuth angle was investigated as shown in Fig. 5. 

(19)

where ϕk+1 and ϕk represent the new and previous values of 

the inflow angle, respectively, ω is the relaxation factor, and 

9 

extrapolated aerodynamic table of the S809 airfoil is applied to extract the corresponding lift, drag, 

and moment coefficients at a given angle of attack. Occasionally, the iteration process failed due to an 

abrupt change of the predicted value. A successive under-relaxation technique is thus proposed and 

applied to prevent a possible failure during the iteration process as follows: 

1 1 (1 )k k k       ,  (19) 

where 1k   and k represent the new and previous values of the inflow angle, respectively,  is the 

relaxation factor, and 1k  denotes the newly calculated value to be corrected. In this study,  = 0.1 

is used with no divergence problem. The under-relaxation technique leads to stable convergence, 

although it has a weak point when increasing the computing time. 

3. Results and Discussion

The NREL Phase VI rotor is a test model designed for unsteady aerodynamic experiments (UAE) 

[19]; it is two-bladed, twisted, and has a tapered shape with an S809 airfoil over the entire span. The 

model test was performed in the 24.4 m  36.6 m wind tunnel of the NASA Ames research center, and 

pressure distributions were measured at r/R = 0.3, 0.47, 0.63, 0.8, and 0.95 radial positions. The 

measurements at 30º yaw were performed for tunnel speeds ranging between 5 m/s and 17 m/s. 

Measurements using the NASA-Ames wind tunnel are very suitable for validating large size yaw 

models. The S809 airfoil is a 21% thickness laminar-flow airfoil with a sharp trailing edge for the 

horizontal axis wind turbine. The wind tunnel data of the S809 airfoil, previously tested at the Ohio 

State University [20], will be used for aerodynamic performance analysis with a modified BEMT. Fig. 

4 shows the S809 airfoil shape and distribution of drag, lift, and moment coefficients with respect to 

angles of attack at the Reynolds number of 1.5106. The specifications and operating conditions for 

the NREL Phase VI rotor are summarized in Table 1. In this study, the predicted axial loads and 

inflow angles of attack for the NREL Phase VI rotor in 30º yawed condition will be compared with 

measured data at two selected tunnel speeds of 10 m/s and 15 m/s.  

The variation of angles of attack according to azimuth angle was investigated as shown in Fig. 5. 

 denotes the newly calculated value to be corrected. In 

this study, ω = 0.1 is used with no divergence problem. The 

under-relaxation technique leads to stable convergence, 

although it has a weak point when increasing the computing 

time.

3. Results and Discussion

The NREL Phase VI rotor is a test model designed for 

unsteady aerodynamic experiments (UAE) [19]; it is two-

bladed, twisted, and has a tapered shape with an S809 

airfoil over the entire span. The model test was performed 

in the 24.4 m × 36.6 m wind tunnel of the NASA Ames 

research center, and pressure distributions were measured 

at r/R = 0.3, 0.47, 0.63, 0.8, and 0.95 radial positions. The 

measurements at 30º yaw were performed for tunnel speeds 

ranging between 5 m/s and 17 m/s. Measurements using 

the NASA-Ames wind tunnel are very suitable for validating 

large size yaw models. The S809 airfoil is a 21% thickness 

laminar-flow airfoil with a sharp trailing edge for the 

horizontal axis wind turbine. The wind tunnel data of the 

S809 airfoil, previously tested at the Ohio State University 

[20], will be used for aerodynamic performance analysis 

with a modified BEMT. Fig. 4 shows the S809 airfoil shape 

and distribution of drag, lift, and moment coefficients 

with respect to angles of attack at the Reynolds number of 

1.5×106. The specifications and operating conditions for 

the NREL Phase VI rotor are summarized in Table 1. In this 

study, the predicted axial loads and inflow angles of attack 

for the NREL Phase VI rotor in 30º yawed condition will 

21 

,l dc c

,z tu u

1| |k k    

360o 

r r dr 

d   

 

Fig. 3. Flow chart for yawed HAWT 
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Table 1. Operating condition of NREL Phase VI bade
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Table 1. Operating condition of NREL Phase VI bade 

Descriptions Value 

Number of blades 2 

Rated power [kW] 19.8 

Power regulation Stall 

Rotational speed [rpm] 71.63, synchronous 
90, variable speed 

Tilt angle 0 

Rotor diameter [m] 10.058 

Hub height [m] 12.192 

Rotational direction 
(viewed from upward) 

CCW 

Cut-in wind speed [m/s] 5 
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be compared with measured data at two selected tunnel 

speeds of 10 m/s and 15 m/s. 

The variation of angles of attack according to azimuth 

angle was investigated as shown in Fig. 5. The curves of the 

angle of attack at 4 radial positions of r/R = 0.47, 0.63, 0.80, 

and 0.95 for a wind speed of 10 m/s is periodically oscillated 

due to the yaw error. From the results we can determine two 

characteristics of the NREL Phase VI blade. Firstly, there is 

a larger angle of attack at the inboard portion of the blade 

than at the outboard portion. Usually, the angle of attack is 

a function of both flow and twist angles so that the inboard 

stall phenomenon can be adjusted. We can therefore 

conclude that the stall phenomenon will be initiated at the 

inboard rather than outboard region of the given NREL 

Phase VI blade. 

Secondly, the yaw error changes the flow angle. The 

NREL Phase VI rotor was designed to rotate in the counter-

clockwise direction. Clear definitions of the azimuth and 

yaw angles are a prerequisite for comparison of the predicted 

results with experiment data. The blade azimuth angle is 

defined as zero for the blade pointing down in the vertical 

position, i.e. the 6 o’clock position [19]. For positive yaw, the 

upwind side of the rotor plane can be defined between 0 and 

180 degrees azimuth, where for negative yaw, this upwind 

side is between 180 and 360 degrees azimuth [19] as shown 

in Fig. 6, whilst NREL defines that the zero azimuth angle is 

at the 12 o’clock position and the yaw angle has the opposite 

sign to the present definition. For positive yaw, the blade 

is fully retreated at the 12 o’clock position, and advanced 

at the 6 o’clock position with respect to the in-plane wind 

component. This phenomenon yields sinusoidal variation of 

the angle of attack per revolution, and the flow angle from 

Eq. (16) will be maximized at the 12 o’clock position, and 

vice versa. Therefore, the angle of attack will be maximized 

at the 12 o’clock position. The predicted results for the angle 

of attack at r/R = 0.47, 0.63, 0.80, and 0.95 for a wind speed of 

10 m/s clearly explain the case mentioned above as shown 

in Fig. 5.

The predicted normal forces using modified BEMT at the 

four radial positions of r/R = 0.47, 0.63, 0.80, and 0.95 for 

a wind speed of 10 m/s are compared with corresponding 

measured data as shown in Fig. 7. The normal force can be 

calculated from following equation:
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2 ( cos sin ) / 2, [Pa]n l dF W c c    ,  (20) (20)
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(b) Drag and moment curves 

Fig. 4. Aerodynamic data for S809 airfoil 
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Fig. 4. Aerodynamic data for S809 airfoil
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Fig. 5. Variation of angle of attack (V = 10 m/s, yaw angle = 30o)
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where W is the magnitude of relative velocity which is a 

vector sum of the axial velocity and the tangential velocity 

at the specified radial location on the disc plane. Except for 

the tip position at r/R = 0.95, the computed results based 

on the modified BEMT closely agree with the experimental 

data. All of the normal forces indicate minimum values at the 
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(a) Top view 

(b) Front view 

 

Fig. 6. Yaw and wake skew angles 
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Fig. 6. Yaw and wake skew angles 
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Fig. 6. Yaw and wake skew angles
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(b) r/R = 0.63 
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(c) r/R = 0.80 
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(d) r/R = 0.95 

Fig. 7. Normal force distribution for wind speed of 10 m/s 
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Fig. 7. Normal force distribution for wind speed of 10 m/s
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azimuth angle of 180º where the blade is fully retreating i.e. 

the 12 o’clock position. We assumed that the slightly greater 

difference between the measured and predicted result at r/R 

= 0.95 compared with the other radial positions originated 

from the selected tip loss model. Henceforth, a comparative 

review for the tip loss model in addition to Prandtl’s model 

will be necessary for a detailed investigation of the difference 

value at the tip position. 

Figure 8 shows the variation of the angles of attack with 

respect to the azimuth angle at the 4 radial positions of r/R 

= 0.47, 0.63, 0.80, and 0.95 for a wind speed of 15 m/s. From 

the comparison of angle of attack in Figs. 5 and 8, we can 

determine that the angles of attack are relatively increased 

due to the increased wind speed from 10 m/s to 15 m/s. The 

result reveals that most of the angles of attack are in the range 

of 15º to 45º. Therefore, most of the angles of attack exceed 

the stall angle of the S809 airfoil which can be estimated from 

Fig. 4. 

The predicted normal forces at 4 radial positions for a 

wind speed of 15 m/s are compared with corresponding 

measured data as shown in Fig. 9. The oscillating trend of 

the normal force according to the azimuth angle is similar 

to that shown in Fig. 7, but the difference in value between 

the predicted and measured data is larger than those in Fig. 
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(c) r/R = 0.80 
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(d) r/R = 0.95 

Fig. 9. Normal force distribution for wind speed of 15 m/s 
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Fig. 9. Normal force distribution for wind speed of 15 m/s
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Fig. 8. Variation of angle of attack (V = 15 m/s, yaw angle = 30o)
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7. We believe that the extrapolated aerodynamic data using 

Viterna-Corrigan’s method [12] for the angle of attack in 

the post stall range (over 24º shown in Fig. 4) would have a 

greater source of error. Thus, the gap is derived from the use 

of not-experimented extrapolated aerodynamic data rather 

than from the weak point of the blade element momentum 

theorem with simplified aerodynamic assumptions. It 

should be also noted that the variation in normal force 

may be disturbed by periodic blade deflection from the 

unbalance of the bending moment due to the yaw error. In 

spite of the gap, the accuracy of the predicted aerodynamic 

data is acceptable, with wind tunnel results posing similar 

overall value. Therefore the predicted data is able to provide 

sufficient values for structural or dynamic analysis for a wind 

turbine system. 

The results of the present method are compared with 

those of the PHATAS [19] which is developed by the ECN for 

the aero-elastic analysis of a wind turbine system relying on 

the blade element momentum theorem. It also contains 2-D 

assumptions and engineering models to compute the yaw 

effects of the wind turbine rotor. The present method gives an 

in-phase signal compared with the experimental data, while 

the PHATAS’ results have a 67º phase delay for V = 10 m/s and 

r/R = 0.47 as shown in Fig. 10 and Table 2. Four characteristic 

values for normal pressure such as mean value, |max(FN)-

min(FN)|, mean error compared with the experimental data, 

and phase error show that the present method agrees better 

with the experimental data than the PHATAS’ results. In 

Table 2, the value of |max(FN)-min(FN)| expresses peak to 

peak amplitude of the normal force oscillation.

4. Conclusions

Aerodynamic loads acting on the NREL Phase VI blade 

were calculated numerically using a corrected blade element 

momentum theorem. The existing blade element momentum 

theorem was modified based on well-known aerodynamic 

corrections such as Pitt and Peters’ yaw correction, Buhl’s 

wake correction, Prandtl’s tip loss model, Du and Selig’s 

three-dimensional stall delay model. Calculated results were 

verified by comparing with other experimental works of 30º 

yaw and two given wind speeds obtained from the NASA-

Ames subsonic wind tunnel. A successive under-relaxation 

technique was developed and applied to prevent possible 

failure during the iteration process. 

The developed code provided results with stable 

convergence and fast calculation, despite the possible 

35 

 

 

 

 

 

(a) r/R = 0.47 

Azimuth angle [o]

N
or

m
al

Fo
rc

e
[N

/m
2 ]

0 90 180 270 3600

100

200

300

400

500

600

700

800

Present
Experiment
PHATAS

     

36 

 

 

 

 

 

(b) r/R = 0.63 

Fig. 10. Comparison with PHATAS’ results (V = 10 m/s, yaw angle = 30o) 
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Fig. 10. Comparison with PHATAS’ results (V = 10 m/s, yaw angle = 30o)

Table 2. Characteristic values of normal force of different methods for V = 10 m/s, r/R = 0.47

18 

Table 2. Characteristic values of normal force of different methods for V = 10 m/s, r/R = 0.47 

 Experiment Present PHATAS 

Mean value 328.5 289.1 285.8 

max( ) min( )N NF F 168.6 192.3 104.4 

Mean error with experiment - 40.4 55.1 

Phase error - 0º 67º * 

* Phase error is obtained from the minimum peak value 
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disruptions of the classical blade element momentum 

theorem with a number of additional corrections applied. 

A yaw error yields periodic oscillation of the normal force 

according to the azimuth angle. The periodic change of the 

relative incoming wind speed on the blade element creates 

periodic change of the angle of attack on the blade element. 

Comparison between calculated and experimental results 

proves that the modified numerical procedure is effective in 

producing results with acceptably minute margins of error. 

The code will be useful for achieving a comprehensive tool 

for wind turbine design and analysis in future works
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