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Elastica of Cantilever Column with Constant Volume Subjected to Combined Loads
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Abstract

This paper deals with the elastica of deflected cantilever column with the constant volume. The columns are subjected to
combined loads consisted of an axial compressive load and a couple moment at the free end. Differential equations governing the
elastica of such column are derived, in which both the effects of taper type and shear deformation are included. Three kinds of
taper types are considered: linear, parabolic and sinusoidal tapers. Differential equations are solved numerically to obtain the elastica
of objective columns. The effects of various system parameters on the elastica are investigated extensively. Experimental studies
were carried out in order to verify the theoretical results of non-linear behavior of the elasticas.

Keywords | cantilever column, constant volume, elastica, geometrical non-liner analysis, combined load,
experiment

1. Introduction

Since columns are basic structural forms, these
units are widely used in structural engineering. In
column problems, predicting both the buckling loads
and post-buckling behavior are very important for
column safety. Column responses under loadings de-
pend on the cross—sectional shape, taper type, shear

deformation, etc.(Haftka et al, 1990: Gere and

Timoshenko, 1997)

The first studies of the large deformed shapes,
namely elasticas, based on the elastica theory were
published by Euler(1774). During the past few dec-
ades, elastica problems including column elasticas
were discussed by many researchers. The works re-
lated to the present study, especially those involv-
ing the taper effect, shear deformation effect and

experimental studies, were carried out by several
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researchers, e.g. those for the taper effect by Lee
and Wilson(1993), Lee and Oh(2000) and Lee et al.
(2002); those for the shear deformation effect by
Huddleston(1972), Theocaris and Panayotounakos
(1982), Sheinman and Adam(1987), Goto et al.
(1990).
(2004); and those for experimental methods by
Wilson et al.(1971), Lee and Wilson(1993), Lee et
al.(2006) and Lee et al.(2007).

It is ideal that axial loads of columns are sub-

and Sotiropoulou and Panayotounakos

jected exactly to the centroid of cross-section. How-
ever, all most of axial loads are acted on eccentri-
cally so that it is desirable that the column loads
are considered as the combined load consisted with
both axial load and couple moment. In this work,
the combined load is considered in the analysis of
column behavior. Also, it is well known that the in-
clusion of shear deformation can increase the mem-
ber deflections. For structural safety, it is neces-
sary to include the shear deformation in structural
analysis. Recently new structural materials have
been developed and increasingly used in the struc-
tural work, which can sustain relatively large de-
flections compared with traditional materials. In
these regards, the elastica problems of column in-
cluding the buckling load, equilibrium path and
stress resultant are very important in the analysis
of column behavior. From all of these view points,
this paper aims to analysis the geometrical non-lin-
ear responses of cantilever column subjected to
combined loading. Herein, objective columns have
the constant volume with the regular polygon
cross—section. Such columns have to become tapers
whose cross—sectional depth of column are varied
along the column axis. In this study, three kinds of
taper types are considered: linear taper, parabolic
taper and sinusocidal taper. In the first author’s
pervious work(Lee et al. 2007), only the axial loads
acted in centroid of the cross—section, i.e. not com-
bined loading, have been analyzed.

In this paper, following assumptions are inherent:
(1) column material is linear elastic; (2) column

axis is incompressible: and (3) column is initially
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perfect. Under these assumptions, non-linear differ-
ential equations governing the elastica, i.e. de-
flected shape of column, are derived, in which the
effect of shear deformation is included.

For solving differential equations, both Runge-
Kutta and Regula-Falsi methods are used for in-
tegrating differential equations and for determining
the unknown horizontal deflection of the free end,
respectively. Through parametric studies, effects of
taper type, section ratio and side number on the
non-linear behavior such as equilibrium path, de-
flection, rotation, stress resultant and elastica are
discussed in detail. Also, section ratios of the opti-
mal . column are determined from the parametric
studies. Herein, an optimal column is defined as a
column which has the minimum response under the
given load condition. In addition, the theory and
numerical methods of this study were validated by

two sets of the laboratory scaled experiments.

2. Objective Columns

Shown in Fig. 1 is the configuration of an ob-
jective column with the length 7 whose volume V
is always held constant. Its cross-sectional shape is
the regular polygon with the integer side number
k=3. The cross-sectional depth is depicted as 7%
which is varied along the axis s. Its area A and
moment of inertia of area I are also varied with s.

At the clamped end( s=0), the depth is %, name-
ly h=h,, and at the free end(s=10, h=h, For

defining the column geometry, the section ratio «a is

introduced as

a=h;lh, (1

The values of A and I of the regular polygon

cross—section with % and % are

A=a,h’ (2)
I= 02h4 (3)



where

a,= ksin(n/k)cos (n/k) (4)
ay=(k/12) sin(7/ k) cos *(x/B)[3+ tan *(x/B)] (5)

The cross-section with k=oco is circular and its
a, and a, are x and x/4, respectively. It is noted
that every axis through the centroid of the regular
polygon cross-section is a principal axis so that ev-

ery monet of inertia of area I with respect to every

principal axis is same.

The depth % which is a function of s is defined.
Herein, three kinds of the functional variation 7
are chosen as: (1) linear: (2) parabolic: and (3) si-
nusoidal tapers. Since the functional equation &
passes two points of ((, &), (I, ak,) in the co-or-
dinates(s, %) as shown in Fig. 1, each functional

equation % can be determined as

* Linear taper

h=hfas(s/1)+1] (6)

* Parabolic taper

h=nJas(s/1)*+1] ("N

* Sinusoidal taper

h=hJassin(zs/27)+1] (8
S
A
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Fig. 1 Column with constant volume and regular
polygon cross-section
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as=a—1 9)

The column volume V can be computed by using
Egs. (2) and (6)~(8), or

!
Vzﬁszm@%Z (10)

where

» Linear taper

a,=(a*+a+1)/3 (11D

¢ Parabolic taper

a,=@Bad*+4a+8)/15 (12)

« Sinusoidal taper

a=(a—1)*2+4(e—1D/n+1 (13)
3. Governing Equations
3.1 Definition of Variables

Shown in Fig. 2(a) is a cantilever column placed

(x, y) whose origins

on rectangular co-ordinates

X
A

freeﬁ A, q}c R

(a)

7
W B S -

Fig. 2 (a) Column subjected to combined load:
(b) relationships between P, C and e
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are the clamped end. The dashed line represents
the straight axis of column before loading. Mean-
while, the solid line depicts the deflected shape,
namely elastica, after loading. The arc length meas-
ured from the clamped end to co-ordinates (x, ) is
depicted as s. At the free end, the centroidal load
P and couple moment C are carried out com-
binedly. These loads are equivalent to an axial load
P with the eccentric distance e= C/P. Therefore,
P with C=0 represents one centroidal load, and
C with P=( represents the pure bending.

The relationship between P, C and e is illus-
trated in Fig. 2(b). Since every axis passing the
centroid is a principal axis of cross-section, the ver-
tical axis to the line linked with the centroid and
acting point of the load becomes the bending ax-
is(b.a).

Before loading, both s-and x-axes are coincide.
However, s-axis is departed from x-axis and two
axes are no more coincide when the column is de-
formed by loads. Because of incompressibility of the
column axis, the length of deflected column sustains
its original length /. Therefore, value s of elastica
at the free end is /. The deflected column is sub-
jected to the stress resultants: normal force N,
shear force @, and bending moment M. Column ro-
tation @ consists of rotation ¢ due to M and rota-
tion B due to Q. At the free end(s= ), the hori-
zontal and vertical deflections and rotation are de-

picted as 4, 4, and 8, respectively. At the

clamped end(s=0), both the vertical reaction P
and reaction moment M.=P4,+ C are subjected.
At the free end of elastica, the deflection 4, is un-
known so that M (=P4,+ C) at the clamped end
becomes an undeterminant and subsequently, co-or-
dinates (x,y), rotations (¢, 8 and stress resul-
tants (N, @, M) are also unknown. Once again, it is
accentuated that the determining all of these un-
knowns including (x,%), (¢,8) and (N, Q,M) of

the elastica is the essential point of this study.

i
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Fig. 3 Positive stress resultant and rotation

3.2 Derivation of Differential Equations

Shown in Fig. 3 are the positive sign convention
of stress resultant and rotation of cross-section.
Referring the sign convention and also applying
equilibrium equations in Fig. 2, stress resultants
N, @ and M at any co-ordinates (x, y) are obta-

ined. The results are

N= Pcosf (14)
Q= Psin6 (15)
M= P4,+ C— Py (16)

As shown in Fig. 3, the total rotation @ consists
of ¢ due to M and B due to . It is natural that

the following equation is obtained.
0=¢+ 8 (17)

Stress resultants M and @ can be expressed by

the rotations ¢ and B, respectively. The results

are
M= 15:11'5(1;é (18)
S
Q= fGAB (19)

Here, E is Young's modulus, G is shear mod-
ulus of elasticity and f is shape factor. Value of f
ist f=0.417 for k=3, f=0.833 for k=4 and
7=10.900 for k=5(Arbabi, 1991).

Following equation is obtained by differentiating
Eq. (17) with respect s.



db _dy  dg

First order derivatives of d¢/ds and dB/ds in Eq.
(20) are now determined. Substituting Eq. (16) to
Eq. (18) and rearranging about the term of d¢/ds
give d¢/ds, and dB/ds is obtained by differentiating
Eq. (19) with respect to s. Two results are

A — Lo (pa,+ c~ Py 21)
d8_ 1 ,dQ QdA
ds = A ds A ds) (22)

Both derivatives d@/ds and dA/ds in Eq. (22)
are obtained. Derivative d@Q/ds is obtained by dif-
ferentiating Eq. (15) with respect to s.

(23)

a0 df
ds = Pcos & ds

By using Egs. (2) and (6)~(8), first order de-
rivative dA/ds by taper type is obtained as follows.

* Linear taper

2a a3
AL — St 4($) +1]) (24)

* Parabolic taper

2
A4 Al s (3 41] (25)

* Sinusocidal taper

dA a,asmh’

25 ;. cos (g?)[a3sin(lzz‘})+ 1] (26)

Differential equations governing the elastica of
deflected column can be derived. Substituting Eq.
(3) to Eq. (21) gives the equation of d¢/ds, and
substituting Eqs. (2), (15) and (23)~(26) gives the
equation of dB/ds. And then substituting two equa-
tions of d¢/ds and dB/ds to Eaq. (20) gives the

non-linear differential equation as

46 _ 1 P4,+C—Py
ds 1——BCQSJL2 > EayhiH
fGa ki HY

ol - WL - &EW

Paysin 6H, ] < 5
- <s< 7
fGalhchsl N 0 s<] ( )

where F, and H, are

* Linear taper
Hi=as(s/1)+1 (28)

* Parabolic taper
H =a,(s/1)*+1 (30)
Hy=4s/ I’ (31)

* Sinusoidal taper
H,=aysin(zs/20) +1 (32)
Hy={(r/Dcos(ns/2]) (33)

Referring Fig. 3 depicting the trigonometric rela-

tionship, well-known differential equations are ob-

tained, or
% =cosf, 0<s</ (34)
f:,f =sinfd, 0<s</ (35)

Equations (27), (34) and (35) are differential
equations governing the elastica of deflected column
with the constant volume. These equations are typi-
cal geometrical non-linear differential equations so
that the non-linear behavior of column such as
equilibrium path can be analyzed.

Since the rotation and deflections are not allowed
at the clamped end( s=0), boundary conditions are

obtained as

6320:0 (36)
xs:OZO (37)
ys:(J:O (38)

It is fact that differential Egs. (27), (34) and
(35) subjected to the boundary conditions of Egs.
(36) ~(38) are fittable on the initial value problem.
Since Eq. (27) contains the unknown 4, this

SRR REs| =22 H203 M55(2007.10) 585
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equation can not be integrated even though all
boundary conditions at s={( are already known as
shown in Egs. (36)~(38). The horizontal deflection
of the free end(s=10 is 4, ie. y,—,=4, and
therefore, the boundary condition at the free end is

obtained as follows.

Vs—;— 4,=0 (39)

3.3 Non-dimensional Governing Equations

To facilitate the numerical studies and to obtain
the most general results for this class of problem,
the following non-dimensional system parameters
are defined. Parameters related to the co-ordinates

are introduced as

A=/l (40)
E=x/1 41)
n=y/l (42)
Sy=4d,l1 (43)
8,=4,/1 (44)

where (A, &, 7) are non-dimensional co-ordinates
normalized by the length / and (§,, §,) are non-
dimensional deflections at the free end(A=1).

Shear parameter g which is related to the mate-
rial properties and aspect ration » which is related

to / and V.are defined, respectively, as

g=G/E (45)
r=(13/ V)12 (46)

Finally, loads P and C are normalized as

follows.
p= PI'/(EV?) (47
c= CP/(EV?) (48)

For converting dimensional Egs. (27), (34) and
(35) to non-dimensional ones, the terms of dy/ds,

dx/dsand dy/ds are rewritten as follows.

586 #=FMTEE
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df _ df _1.do

ds — d(M)— [ dA (49)
dx _ d(IE) _ dE

ds — d(ld) — dA (50)
dv _dp _ dn (51)

ds _ d) ~ d

Using all equations mentioned above, non-dimen-
sional differential equations are obtained. Substitut-
ing the derivative terms of Eqgs. (49)~(51) to dif-
ferential Eqs. (27), (34) and (35), and using pa-
rameters in Eqs. (40)~(48) give the non-linear dif-

ferential equation. The result is

do _ p [ diays,+c/v—n)
dA & pijcosf asty
ay fer*
_ipsing
- , 0<a<1 (52)
fer?
where 7, and ¢, are
* Linear taper
h1=azA+1 (53)
iz = 203 (54)
* Parabolic taper
i =a3 A +1 (55)
le - 4a3 /1 (56)
* Sinusoidal taper
i, =assin(zd/2) +1 (57)
iy = (a3 m cos(7mA/2) (58)

Also dimensional Egs. (34) and (35) are trans-

formed into non-dimensional ones easily. The re-

sults are
é'i,%: cosd, 0<A<1 (59)
{f}= sing, 0<A<1 (60)

The boundary conditions of Eags. (36)~(39) can
be converted to the non-dimensional ones by using
Egs. (40)~(43) as follows.



0,-0=0 61)
Ei=0=0 (62)
Ni=0=0 (63)
Ni=1—06,=0 (64)

Finally, stress resultants N, @ and M are nor-

malized as follows.

n= NI/(EV?® = pcos § (65)
a= QI'/(EV?) = psin 6§ (66)
m= MP/(EV®)=pd,+c— by (67)

4. Numerical Examples and Discussion

4.1 Convergence Analysis

When appropriate numerical methods are applied
into differential Eqs. (52), (59) and (60), the elas-
tica of (&, 7 and stress resultants of (#,q, m)
under a given load set of (» and ¢) accompanying
with a given column geometry of (taper type, %, a,
7 and g). The Runge-Kutta method is used for in-
tegrating differential equations subjected to the
boundary conditions and Regula-Falsi method is
used for determining the unknown ¢,. respectively.
In solving differential equations containing the un-
known as the initial value problem, such numerical

methods were already verified in many works(Lee et

al., 2005).

05

Linear, &=3, 0=0.2, r=50, g=0.38

o1 —
0 o 0 60 50 100

/AN

Fig. 4 Convergence analysis
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Prior to executing numerical examples, con-
vergence analyses were done for determining the
suitable step size 4A in the Runge-Kutta method.
Figure 4 shows results of convergence analysis

about the horizontal deflection &, at the free end.

Input variables used in the analysis are shown in

(a) Parabolic, k=4, 0(=0.3, =50, g=0.38, ¢=0.01

B

Om Gy and O/
g

02 —

0 A I A |
01 02 03 04 0%

o

p
(a) combined load

(b) Parabolic, k=4, ¢=0.3, =50, g=0.38, c=0
4 W 5=0.233(non-dimensional buckling load)
03 —
N
o 08 —
<
c
s i
>
S g
£~
“©©
02 —
0
02 025 03 035 04 045 05
P
(b) centroidal load
08
(c) Parabolic, k=4, «=0.3, =50, g=0.3, p=0
06 —
S
= B B
<
S 04—
>
<<
é -
B
02 —
ﬂ d,
0 7 T T T T T T
0 0.01 0.02 0.03 0.04 0.05
c
(¢) couple moment
Fig. 5 Equilibrium paths
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Fig. 4. It is seen that numerical solutions of &,

with 1/41=40, i.e. step size 4A=1/40, are suffi-
ciently converged to those with 1/44=100. In or-
der to increase the accuracy of the numerical sol-
utions, all solutions of this study are obtained un-
der 1/4A=50 with which solutions have the three
significant figures comparing those with 1/44=100.

4.2 Equilibrium Paths

Shown in Fig. 5(a), (b) and (¢) are the equili-
brium paths which represent relationship between
load and deflection. See the input variables of each
column in each figure. Equilibrium paths are typi-
cally non-linear as expected. In Fig. 5(a), the col-
umn behavior has been already arisen even though
p 1s zero because the column has been already sub-
jected to the couple moment ¢=0.01. In Fig. 5(b),
the column is straight before column buckles under
p=0.233 marked B on the p-axis. Therefore, non-
dimensional load p=0.233 becomes the non-dimen-
sional buckling load & defined as b= BI/(EV?)
where B is the buckling load. In Fig. 5(c) of the
case of pure bending, i.e. p=10, non-linearities are

relatively smaller than those of Fig. 5(a) and 5(b).

4.3 Parametric Studies

Column behavior is seriously influenced by col-
umn parameters and it is important to analysis ef-

fects of column parameters on column behavior.

Table 1 Effect of taper type on §,, &8, and 6,

Table 1 shows the effect of taper type on responses
of 8, &, and @, of the free end. Responses are
smaller from parabolic to linear to sinusoidal
tapers. Consequently, the parabolic taper is most
robust against the column behavior among three
tapers under other conditions are held constant. For
an example, the ratio of sinuscidal taper to para-
bolic one for &, with the loads of p=10.2 and c¢=
0.01 is 0.4445/0.2462=1.81 so that the column
of sinusoidal taper responds about 81% greater
than that of parabolic one.

Effect of side number k& on responses of §&,, 9,
and @ is shown in Table 2. Responses are smaller

from £=3 to 4 to 5 to k=co orderly. The regu-
lar triangular( #=3) cross-section is most robust
among the regular polygon ones under other con-
ditions are the same. For an example, the ratio of
k=o to k=3 for §, with »p=0.2 and ¢=0.01
is 0.3773/0.2175=1.73. The column of circular
cross-section( k=o0) responds 73% greater than
that of triangular one( £=3). From results of Table
1 and 2, it is concluded that the parabolic tapered
column with the regular triangular cross-section is
the strongest column among columns combining
with taper types and integer side number k.

Table 3 shows the effect of aspect ratio » on re-
sponses of &,, &, and @, Greater 7 yields small-
er response. The aspect ratio is decreasing effect on
column behavior. However its decreasing rate is

very small and then its effect is negligible. In addi-

Table 2 Effect of kon 8, &, and 6

Load Res. Linear Parabolic Sinusocidal ﬁLoad Res. k=3 k=4 k=5 T k=00
oy 0.3179 0.2462 0.4445 0y 0.2175 0.3365 0.3626 0.3773
p=021 o 0.0980 0.0531 0.2506 p=0.201 5| 00422 | 0.1056 | 0.1246 | 0.1363
¢=10.01 ¢=0.01
0r 1.0079 0.8017 1.5817 05 0.5871 0.9186 0.9976 1.046
Sy 0.5084 0.4638 0.5299 0 0.4350 0.5386 0.5520 0.5h88
b 5—063 8, | 02835 0.1949 0.4330 r= 063 3, | 01838 | 0.3256 | 0.3520 | 0.3669
= C:
o, 1.5749 1.2988 2.0166 o; 1.1515 1.5644 1.6329 1.6705J

*k=5,a=0.4, »=50,2=0.38" Res.: Responses

588 &=MAUTZE
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* Sinusoidal taper, @=0.5. »=50, £=0.38



Table 3 Effect of » on 4,, &, and &
Load Res. r=50 =75 | r=100| »r=c0
e 0.2641 | 0.2640 | 0.2640 | 0.2639
cp==(?021 8, 0.0533 | 0.0533 | 0.0533 | 0.0533
0 0.6044 | 0.6043 | 0.6042 | 0.6041
o 0.5646 | 0.5645 | 0.5645 | 0.5644
1)C==0(.)3 0y 0.2841 | 0.2840 | 0.2839 | 0.2839
0; 1.3177 | 1.3174 | 1.3172 | 1.3171

* Linear taper, k=00, ¢=0.6, g=0.38

tion, when # is neglected in the theory, the differ-

ential Eq. (52) is reduced to the simple equation of

do _ @144

2 2
=i (b8t o= ) (68)
2¢1

Note that using above equation instead of Eg.
(52) vields the responses slightly underestimated.
Therefor, it is useful to use Eg. (68) in cases of

highly slender columns.

4.4 Optimal Section Ratios

It is important to find out the optimal shape of
column whose responses become minimum under the
given load condition. Shown in Fig. 6(a) and 6(b)
are the « versus(4,, J, and 6, curves. See input
parameters in each figure. In Fig. 6(a), each re-
sponse of §,, &, and @, decreases and reaches
each minimal response and increases as section ra-
tio @ increases. In each curve of Fig. 6(a), each
lowest point is marked as O, whose response is
minimized at the corresponding « value. For an ex-
ample, minimal response of §,=0.130 is arisen at
a=0.549. This means that optimal section ratio «
is determined as a,,=0.549 against the minimal

8,=0.130 for a given load condition( p=0.2 and

¢=10.01) and geometry of column(parabolic, k=3,
r=50, £=0.38). Similarly, @,,=0.584 for mini-
mal §,=0.0126 and «,;=0.682 for minimal 4,=

(a) Parabolic, k=3, =50, g=0.38,
0=0.2, =001

O Oyand &

(0.682,0.302)

{0.549,0.130)

(0584,00126)

02 04 08 08 1 12 14

(a) combined load

1=
(b Parabolic, k=3, r=50,
g=0.38, p=0.3, ¢c=0

f /

06 -— 6f
4 6h
04— 5
02\ ]
0400 0637
T I T I
4 06 08

Op Ovand &,

0 T

!
02 0 1 12

(84
(b) centroidal load
Fig. 6 « versus (§,, 8, and 8, curves

0.302 are obtained. As discussed in this example,
optimal section ratios e,y for a given column con-
dition can be determined. Figure 6(b) shows the re-
sponge variations of &, &, and &, in case of the
centroidal load( »=0.3, ¢=0). Both minimum and
maximum ¢« values are marked as M on c¢-axis, at

which the column does not buckle under the given
k=3, r=50, g=0.38,

c=0). The column is straight in the

condition(parabolic taper,
»=0.3,
range of 0.400<@<0.637 and while in the range of
@<0.400 and «>0.637,
shown in this example, the stable region of « in

which the buckle

determined. These kinds of figures are useful for

the column buckles. As
can be

column does not

designing the optimal columns.
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4.5 Stress Resultants and Elasticas

Fig. 7 shows diagrams of the stress resultants
n,q and m loaded on the cross-section. See input
variables of the columns in the figure. Stress re-
sultants =z and m are greatest at the clamped end

while zero at the free end. Meanwhile, the reverse
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Fig. 9 Experimental set up

is fact for the stress resultant gq.

Typical elasticas of deflected shape of column are
shown in Fig. 8(a), (b) and (¢). Load and geometry
of column are shown in each figure. From these fig-
ures, it is clear that the parabolic taper with trian-

gular( #=3) cross-section and section ratio a,,=

0.549 is the strongest column comparing other geo-

metries for the given loads{ p=10.2 and ¢=0.01).

5. Experiments

5.1 Experimental Process

For validating the theory and numerical methods
developed herein, two sets of laboratory scaled ex-
periments were done. Shown in Fig. 9 is the sche-
matic view of the experimental set up. Specimen
column is fixed on the steel frame. At the free end,
a rigid stub is sticked and the weight( P) is hang-
ing at the tip for realizing the eccentric load. It is
noted that the eccentric distance e is the vertical
length measured from the centroid to the wire axis
after final deforming state as shown in Fig. 9. This
load system is equivalent to the combined load with
P and C= Pe. For measuring the deflections, grid
paper is attached on the backboard of the ex-
perimental frame.

Prior to executing experiments, the load which
causes moderate deflections is pre-computed by the



theory. The weight is increased slowly to the pre-
computed load P and then the equilibrium state is
performed finally. By using the digital camera, pho-
tographs of deformed shapes are taken, enlarged
photographs are printed out and those deflections
and rotations are measured by the calipers and an-
gle meter, respectively. Readers can refer the work
by Wilson(1993) who discusses this kind of experi-
ments in detail.

5.2 Geometry of Specimen Columns

According to the experimental process, two sets of
experiments were done. Specimen columns were
chosen as the linear taper with square cross—section
(k=4) which may be relatively easy to make.
Plastic was used for the column material whose
properties are E=23.4x10° N/mm? and G=1.21x
103 N/mm® and thus its non-dimensional system
parameter g=0.357. Loads and geometries of the

specimens in experiments are:

* Specimen A: Centroidal load
{=250mm, k.,=8.7mm, 2,~4.2mm and P=
45N for which its system parameters are

a=0.483, »=33.7 and p=0.256

* Specimen B: Eccentric load

[=300mm, #%.,=9%9.6mm, ki/~4.2mm, P=
31N and e=14.5mm for which its system pa-
r=40.5, »=10.248,

e/1=10.0484 and ¢=0.0120(=0.248x0.0484)

rameters are a=0.438,

Note that the specimen A is subjected to the cen-
troidal load and the specimen B is subjected to the
eccentric load, namely combined load with P and

C= Pe.

5.3 Experimental Results

Deflections and rotations are measured from the

o[-« AETE - 3R

enlarged photos, and normalized, and compared

with those computed by the theory in Table 4 in
which 8,. §, and g, at A=1(free end)), and the

horizontal deflection 7, vertical deflection A—¢&
and rotation 8 at A=2/3 are reported. Table
shows that average errors are about 3.54% in case
of the specimen A and about 5.45% in case of the
specimen B. Perhaps, defaults of manufacturing the
specimen and also excluding the material non-line-
arity in the theory may yield such discrepancies.
Considering that two results by theory and experi-
ment are agreed quite well, the theory developed

herein is validated.
6. Conclusions

This paper deals with the geometrical non-linear
analysis of the cantilever column. Objective columns
have the constant volume with the regular polygon
cross—section whose depth is varied with the linear,

parabolic and sinusoidal functional fashions. At the

Table 4 Comparisons of column responses between
theory and experiment
* Specimen A: Centroidal load

Position | Res. Theory Experi. Error(%)*
Oy 0.199 0.205 3.02
A=1 d, 0.0318 0.0330 3.77
0 0.470 0.480 2.13
7 0.0734 0.0712 3.00
A=2/3 A—£& 0.00620 - -
0 0.278 0.262 5.76
* Specimen B: Eccentric load
Position Res. Theory Experi. Error{%)*
on 0.443 0.462 4.29
A=1 0, 0.195 0.182 6.67
0 1.341 1.392 3.80
7 0.165 0.152 7.88
A=2/3 A—& 0.0333 0.0352 5.71
0 0.671 0.642 4.32

* Error(%) =|1—Experiment / Theory!x100

a
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free end, the combined load consisted of an axial
load and a couple moment. Following results are
obtained:

1) Differential equations governing the elastica of
column subjected to the combined loading are
derived.

2) Columns are more robust against the respo-
nses from the parabolic to linear to sinusoidal
tapers.

3) Columns with the smaller side number( &)
yield the smaller responses.

4) Aspect ratio( #») is the decreasing effect on the
column responses but this effect is negligible.

5) Optimal section ratios( a,,) can be determined

by reading the lowest points of the respective «
VErsus responses Curves.
6) Through the laboratory scaled experiments, the

theories developed in this study are validated.
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