• Title/Summary/Keyword: Colorectal Cancer Cells

Search Result 344, Processing Time 0.03 seconds

Study of Metabolic Profiling Changes in Colorectal Cancer Tissues Using 1D 1H HR-MAS NMR Spectroscopy

  • Kim, Siwon;Lee, Sangmi;Maeng, Young Hee;Chang, Weon Young;Hyun, Jin Won;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1467-1472
    • /
    • 2013
  • Metabolomics is a field that studies systematic dynamics and secretion of metabolites from cells to understand biological pathways based on metabolite changes. The metabolic profiling of intact human colorectal tissues was performed using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, which was unnecessary to extract metabolites from tissues. We used two different groups of samples, which were defined as normal and cancer, from 9 patients with colorectal cancer and investigated the samples in NMR experiments with a water suppression pulse sequence. We applied target profiling and multivariative statistical analysis to the analyzed 1D NMR spectra to identify the metabolites and discriminate between normal and cancer tissues. Cancer tissue showed higher levels of arginine, betaine, glutamate, lysine, taurine and lower levels of glutamine, hypoxanthine, isoleucine, lactate, methionine, pyruvate, tyrosine relative to normal tissue. In the OPLS-DA (orthogonal partial least square discriminant analysis), the score plot showed good separation between the normal and cancer groups. These results suggest that metabolic profiling of colorectal cancer could provide new biomarkers.

Stimulatory Anticancer Effect of Resveratrol Mediated by G Protein-Coupled Estrogen Receptor in Colorectal Cancer

  • Nayun Kim;Junhye Kwon;Ui Sup Shin;Joohee Jung
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.655-660
    • /
    • 2023
  • Colorectal cancer (CRC) is one of the most high-risk cancers; however, it has been suggested that estrogen signaling in CRC could have a protective effect. Therefore, we focused on the function of the G protein-coupled estrogen receptor (GPER) among the estrogen receptors in CRC. In this study, we investigated the therapeutic effect of resveratrol via GPER in CRC (RKO and WiDr) cells, CRC cell-derived xenograft models, and organoids (30T and 33T). Resveratrol significantly suppressed cell viability and proliferation in highly GPER-expressing RKO cells compared to that in low GPER-expressing WiDr cells. In xenograft models, resveratrol also delayed tumor growth and exhibited a high survival rate depending on GPER expression in RKO-derived tumors. Furthermore, resveratrol significantly inhibited the viability of organoids with high GPER expression. Additionally, the anticancer effect of resveratrol on CRC showed that resveratrol rapidly responded to GPER, while increasing the expression of p-ERK and Bax and cleaving PARP proteins.

Effects of Butyrate on Colorectal Cancer (대장암에 대한 butyrate의 효과)

  • Jin, Ji Young;Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.143-156
    • /
    • 2013
  • Due to the high incidence of cancer and cancer-related mortality in Korea, there is increased concern and psychological anxiety about this disease, leading to increasing numbers of cancer studies. Despite these, the trend of the cancer incidence rate has shown a significant increase. The detection of colorectal cancer, which has a high incidence rate, often tends to be delayed, causing a high mortality rate. Therefore, the prevention of colorectal cancer has become an important emergent issue. The cause of this cancer has not been confirmed. However, it may be attributable to westernized dietary patterns, which include consuming a high quantity of red meat. Consumption of dietary fiber promotes the production of butyrate short-chain fatty acids by enteric bacteria. In the treatment of cancer, anticancer medications have been shown to lead to the apoptosis of tumor cells, and a strong relationship between apoptosis mechanisms of tumor cells and cancer treatment has been confirmed. The results of many studies have confirmed that butyrate can directly promote the apoptosis of colorectal cancer cells. Therefore, increased consumption of dietary fiber, which promotes the production of butyrate shortchain fatty acids, can be expected to have an effect on the prevention and treatment of colorectal cancer.

Anti-Proliferative Activity of Ethanol Extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) Through Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Park, Su Bin;Park, Ji Hye;Shin, Myeong Su;Son, Ho-Jun;Um, Yurry;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.640-646
    • /
    • 2017
  • In this study, we elucidated anti-cancer activity and potential molecular mechanism of 70% ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) (TR-E70) against human colorectal cancer cells. Anti-cell proliferative effect of TR-E70 was evaluated by MTT assay. The effect of TR-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. TR-E70 suppressed the proliferation of human colorectal cancer cell lines, HCT116 and SW480. Although TR-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by TR-E70 more dramatically occurred than that of cyclin D1 mRNA. Cyclin D1 downregulation by TR-E70 was attenuated in presence of MG132. In addition, TR-E70 phosphorylated threonine-286 (T286) of cyclin D1. TR-E70-mediated cyclin D1 degradation was blocked in presence of LiCl as an inhibitor $GSK3{\beta}$ but not PD98059 as an ERK1/2 inhibitor and SB203580 as a p38 inhibitor. Our results suggest that TR-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through $GSK3{\beta}$-dependent cyclin D1 degradation. From these findings, TR-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

Anti-metastatic Effect of Natural Product-motivated Synthetic PPAR-γ Ligands

  • Li, Dan-dan;Wang, Ying;Ju, Zhiran;Kim, Eun La;Hong, Jongki;Jung, Jee H.
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.80-88
    • /
    • 2022
  • Colorectal cancer is one of the most common cancers globally, ranking second for the number of cancer-related deaths. Metastasis has been reported as the main cause of death in patients with colorectal cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcription factor that functions as a tumor suppressor by inhibiting cellular proliferation, migration, and invasion. In our previous efforts to generate natural product-motivated PPAR-γ ligands, the compounds 1 and 2 were obtained. These compounds activated PPAR-γ and inhibited the migration and invasion of HCT116 colorectal cancer cells, and they were also found to inhibit the epithelial-to-mesenchymal transition, which is a key process in cancer metastasis. Compounds 1 and 2 upregulated expression of the epithelial marker (E-cadherin), and downregulated expression of the mesenchymal marker (N-cadherin) and transcriptional factor (Snail). Therefore, the PPAR-γ agonists 1 and 2 could serve as a valuable model for the study on anti-metastatic leads for the treatment of colorectal cancer.

Anti-proliferative and Apoptotic Activity of Extracts of Lindera glauca Blume root in Human HCT116 Colorectal Cancer Cells (감태나무 뿌리 추출물에 의한 대장암세포의 성장억제 및 세포사멸유도)

  • Kim, Yeah-Un;Moon, Ha-Rin;Han, Inhwa;Yun, Jung-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.2
    • /
    • pp.235-245
    • /
    • 2021
  • Lindera glauca Blume has been used in Korean traditional medicine to treat the symptoms of paralysis, abdominal pain, speech disorders, extravasations, contusions, and pain caused by rheumatoid arthritis. We investigated the effect of L. glauca Blume extracts on the proliferation of colorectal cancer cells in vitro using HCT116 human colorectal cancer cell lines. We also investigated its mechanism of action. For this purpose, we used the MTT assay, western blotting, DNA fragmentation analysis, and flow cytometry. HCT116 cells were cultured in several concentrations of ethanol extracts of L. glauca Blume root (0, 50, 100 ㎍/mL). In this study, colon cancer cell growth was inhibited by L. glauca Blume root extract in a dose-dependent manner. It was associated with induction of apoptosis as assessed by nuclear fragmentation and cell cycle analysis. Apoptosis was assessed using western blotting for TNF-α, IL-6, NF-κB, Caspase-3, PARP, Bax, Bcl-2, and SIRT1. The extract also dose-dependently upregulated the expression Bax, the pro-apoptotic gene and downregulated the expression of the anti-apoptotic gene Bcl-2. Furthermore, the extract enhanced Caspase-3 activity in a dose-dependent manner. Our findings provide evidence that L. glauca Blume extract may mediate its anti-proliferative effect via the modulation of apoptosis.

Role of TGF-β1 in Human Colorectal Cancer and Effects after Cantharidinate Intervention

  • Ma, Jie;Gao, Hai-Mei;Hua, Xin;Lu, Ze-Yuan;Gao, Hai-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4045-4048
    • /
    • 2014
  • Effects of transforming growth factor-beta (TGF-${\beta}$) were investigated in human colorectal cancer, and the influence of cantharidinate in inhibiting TGF-${\beta}1$ expression was explored. Relationships among TGF-${\beta}1$ and sex, age, tumor size, tumor location, tumor stage were also analyzed. H&E and immunohistochemistry staining were employed to assess colorectal cancer and TGF-${\beta}1$ expression, respectively. Then, HCT-116 CRC cells were randomly divided into four groups, controls, no serum-treated, chemotherapy and cantharidinate-treated. Immunohistochemistry and real-time PCR were employed to assess the expression of TGF-${\beta}1$ in CRC cells. Our data showed that the expression of TGF-${\beta}1$ might be associated with tumor size and tumor location (P<0.05). The expression of TGF-${\beta}1$ in CRC groups was higher than in adjacent groups (P<0.05). In addition, the expression of TGF-${\beta}1$ in cantharidinate-treated group was much lower than in CRC group (P<0.05). Taken together, these results suggest that TGF-${\beta}1$ plays an important role in CRC development. Cantharidinate might inhibit the expression of TGF-${\beta}1$ and control the development of colorectal cancer.

Combination of oxaliplatin and β-carotene suppresses colorectal cancer by regulating cell cycle, apoptosis, and cancer stemness in vitro

  • Junghyeun Lee;Seung Chul Heo;Yuri Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide with a high recurrence rate. Oxaliplatin (OXA) resistance is one of the major reasons hindering CRC therapy. β-Carotene (BC) is a provitamin A and is known to have antioxidant and anticancer effects. However, the combined effect of OXA and BC has not been investigated. Therefore, this study investigated the anticancer effects and mechanism of the combination of OXA and BC on CRC. MATERIALS/METHODS: In the present study, the effects of the combination of OXA and BC on cell viability, cell cycle arrest, and cancer stemness were investigated using HCT116, HT29, OXA-resistant cells, and human CRC organoids. RESULTS: The combination of OXA and BC enhanced apoptosis, G2/M phase cell cycle arrest, and inhibited cancer cell survival in human CRC resistant cells and CRC organoids without toxicity in normal organoids. Cancer stem cell marker expression and self-replicating capacity were suppressed by combined treatment with OXA and BC. Moreover, this combined treatment upregulated apoptosis and the stem cell-related JAK/STAT signaling pathway. CONCLUSIONS: Our results suggest a novel potential role of BC in reducing resistance to OXA, thereby enhances the anticancer effects of OXA. This enhancement is achieved through the regulation of cell cycle, apoptosis, and stemness in CRC.

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

MiR-454 Prompts Cell Proliferation of Human Colorectal Cancer Cells by Repressing CYLD Expression

  • Liang, Hong-Liang;Hu, Ai-Ping;Li, Sen-Lin;Xie, Jia-Ping;Ma, Qing-Zhu;Liu, Ji-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2397-2402
    • /
    • 2015
  • Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.