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Metabolomics is a field that studies systematic dynamics and secretion of metabolites from cells to understand

biological pathways based on metabolite changes. The metabolic profiling of intact human colorectal tissues

was performed using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, which was

unnecessary to extract metabolites from tissues. We used two different groups of samples, which were defined

as normal and cancer, from 9 patients with colorectal cancer and investigated the samples in NMR experiments

with a water suppression pulse sequence. We applied target profiling and multivariative statistical analysis to

the analyzed 1D NMR spectra to identify the metabolites and discriminate between normal and cancer tissues.

Cancer tissue showed higher levels of arginine, betaine, glutamate, lysine, taurine and lower levels of

glutamine, hypoxanthine, isoleucine, lactate, methionine, pyruvate, tyrosine relative to normal tissue. In the

OPLS-DA (orthogonal partial least square discriminant analysis), the score plot showed good separation

between the normal and cancer groups. These results suggest that metabolic profiling of colorectal cancer could

provide new biomarkers.
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Introduction

Colorectal cancer has recently been reported to be the

second most common malignancy and is a leading cause of

cancer-associated death in many countries.1,2 Colorectal

cancer is also one of the most leading causes of cancer

morbidity in South Korea, accounting for more than 20,000

new cases in 2007. Colorectal cancer has been reported as

the second most common cancer in males and the third most

common cancer in females. The age-standardized rate for

morbidity from colorectal cancer over the period from 2003

to 2007 was 18.1 per 100,000 per year in males and 11.3 in

females. Colorectal cancer was the most-increased cause of

cancer death over a 25-year period, with a 4.8-fold increase

observed in males and a 3.6-fold increase observed in

females. Similarly, the incidence of cancer also increased by

43% in males and 32% in females. According to the 2009

OECD Health at a Glance report, the rate of increase in the

mortality of colorectal cancer in the nation was among the

highest in the OECD. For colorectal cancer, the rate was

similar to the average rate, i.e., 59.1% in males (OECD

average 56.4%) and 57.1% in females (OECD average

58%). Most of symptoms associated with colorectal cancer

do not manifest until late in the process. Thus, a simple, non-

invasive way of detecting the cancer at an early stage is

important for the success of therapeutic interventions. 

Metabolomics is a useful method to identify small mole-

cules and metabolic pathways.3-5 Metabolomics is the study

of all naturally occurring small molecules, called metabo-

lites, in biological samples such as cells, biofluids, or tissues.

These small molecules are the products of metabolic pro-

cesses and are include various compounds such as sugars

(i.e., carbohydrates), fats (i.e., lipids), nucleic acids, and

amino acids.6 The collection of all metabolites within a cell

is called the metabolome. Various analytical technologies

have been used for metabonomics research, but NMR

spectroscopy and mass spectroscopy are mainly utilized to

identify the hundreds of metabolites in the complex mixtures

of the sample. In particular, NMR-based metabolomics has

been applied in several studies for the diagnosis of diseases

using different types of sample including body fluids, tissue

extracts, and intact tissue. The use of NMR spectroscopy for

metabolomics studies has several advantages including re-

latively high degree of reproducibility, easy-to-identify meta-

bolites, facile determination of the structure of unknown

metabolites, high throughput, and nondestructive sample

treatment.7 However, NMR has lower sensitivity than other

analytic tools such as mass spectrometry.

In the past decade, studies have increasingly utilized high-

resolution NMR spectroscopy for the research of biosystems.

Body fluids such as blood,8 urine,9-11 serum,12-14 cerebrospinal

fluid (CSF).15,16 are widely used for verifying metabolic

mechanisms (or pathways) for many diseases. Recently, the

NMR method was expanded to intact tissue extracted from

animals and humans. The method to examine the intact

tissue samples was developed from a solid-state NMR

technique and is called high-resolution magic angle spinning

(HR-MAS) NMR spectroscopy. HR-MAS NMR spectro-

scopy is a useful tool for analyzing intact tissues2,17-19 that

has been used for several years to discriminate among differ-
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ent states (conditions) of tissue and cell lines. The line

broadening effects of chemical shift anisotropy and dipolar

coupling are reduced by magic angle spinning at 54.7°. Fast

spinning at the magic angle notably improves the resolution

of the spectrum. Consequently, this technique is useful to

acquire high-resolution NMR spectra. Previous studies show-

ed successful results in the analysis of biological tissues,

such as human liver,20 rat liver,21,22 mouse intestine,23 human

breast,24 human brain,25 and rat testicular tissues.26 HR-MAS

techniques have also been applied to cultured cells27 such as

bacteria, hepatocellular carcinoma cells and parasitic proto-

zoa.28

NMR-based metabolomics has two routes for analysis:

target profiling and pattern recognition (non-targeted ap-

proach or chemometric approach).29-31 Target profiling pro-

vides a new approach to explore the specific metabolic

effects of several conditions in biological systems. In this

case, the compounds or metabolites are formally identified

and quantified. Metabolic profiling was developed over the

last decades and has been applied in various research areas

including toxicology, drug development, pharmacology,

foods, and nutrition. The results of target profiling were also

used in disease diagnosis, e.g., in the search for metabolic

biomarkers for cancers. In the second method, pattern

recognition is used to interpret metabolic profiles over many

samples based on spectral patterns and the intensity of

peaks. Pattern recognition requires software that can easily

differentiate between the normal condition and disease.

Chemometrics involves the use of mathematics, statistics,

and computer science to obtain information in chemistry,

biochemistry and chemical engineering from spectral data.

When using this method, the 1D NMR spectrum is initially

split up into smaller parts of bins. This process is called

‘binning’, and it yields isolated peaks and specific features.

The binning data are analyzed using a multivariate statistical

analysis. The most common form is principal component

analysis (PCA),32 which can identify how one sample is

different from the others. PCA can determine the variables

that contribute most to this difference and whether these

variables contribute in the same way or independently from

each other. PCA methods can use visual or graphical group-

ing, and can also be extended to higher-order analysis. Not

only chemometric or statistical approaches but also spectral

analysis is used in metabolomics. In this study, SIMCA-P+

software33 was used for multivariate analysis. SIMCA-P+ is

used for the analysis of PCA, and PLS-DA (partial least

square-discriminant analysis) and OPLS-DA (orthogonal

partial least squares-discriminant analysis).34,35 Currently,

OPLS-DA is also a popular method that has higher discri-

mination than PCA. In addition, OPLS-DA leads to improv-

ed interpretation.

The most common human metabolites detected by meta-

bolomics studies are lipids (saturated and unsaturated),

glucose, taurine, lactate, fumarate, malate, cholesterol, cho-

line-containing compounds (e.g., choline, phosphochline,

phosphatidylcholine, glycerophosphocholine, and phospho-

ethanolamne), and amino acids. In previous reports, human

colorectal cancer was related to several biomarkers, such as

butyrate, acetate, lipids (saturated and unsaturated), choline-

containing compounds, and amino acids (e.g., leucine, pro-

line, cysteine).2 The presence of these biomarkers varies

depending on the type and species of the sample. For

instance, Monleón et al.47 showed that in human fecal water

extracts, normal and cancer samples showed different con-

tents of butyrate, acetate, leucine, proline, and cysteine as

determined by NMR spectroscopy. Chan et al.2 showed that

human tissue samples contained lipids, choline-containing

compounds, taurine, scyllo-inositol, glycine, polyethylene

glycol, phosphoethanolamine, phosphocholine, lactate, and

glucose using HR-MAS NMR analysis. In the present study,

we investigated the differences between normal and cancer-

ous colorectal tissue using HR-MAS NMR spectroscopy

with two different analysis methods; target profiling and

multivariate analysis techniques. 

Experimental Section

Sample Collection and Preparation. Nine tissue samples

from human colon cancer patients were obtained from Jeju

National University Hospital (jeju, Korea). This study was

approved by the institutional review board for ethics of Jeju

National University Hospital (IRB: 2011-38) and by inform-

ed written consent from patients. After the biopsy, the tissue

was divided into normal and cancer samples and then

immediately frozen and stored at −80 oC until measurement.

Each sample was weighed to 20 mg immediately prior to

NMR experiment. A zirconium rotor (4-mm O.D.) was used

to prepare slices of the specimens. The total volume was

adjusted to 45 µL with deuterium oxide to provide field

lock, and the samples also contained 2 mM TSP-d4 (3-

(trimethylsilyl) propanoic-2,2,3,3-d4 acid sodium salt) as a

reference.2,27,36 The rotor was capped by its lid and marked

using black ink for monitoring of the spinning speed. Each

sample was prepared as soon as possible before NMR

measurement to prevent contamination or enzymatic decom-

position.

NMR Spectroscopy. All spectra were acquired at 11.7 T

(500MHz) using a Varian INOVA spectrometer operating at
1H frequency and equipped with a 4-mm gHX nanoprobe.

High-resolution 1H NMR metabolic profiling of intact bio-

psy tissue samples was achieved using magic angle spinning

(MAS) at 54.7° with respect to the direction of the magnetic

field. All data were collected at a spinning rate of 2,000 Hz

and the spectra were checked between the water peak and

the sideband, which coincide with the spin rate. The single-

pulse 1D water suppression experiment was performed on

all the samples. Deuterium oxide provided field frequency

lock, and TSP-d4 was used as an internal chemical shift

reference. The acquisition time, pre-saturation delay, and

relaxation delay time were 2 s, 0.02 s, and 1s, respectively.

In total, 512 scans were collected at a spectral width of 8000

Hz, and the temperature was set at 298 K. All data were

Fourier-transformed and calibrated to TSP-d4 as 0.00 ppm

using Chenomx NMR suite 6.0 professional.
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Data Analysis. All spectra were processed and assigned

by Chenomx NMR suite 6.0 professional (Chenomx Inc.,

Edmonton, Canada) and the Chenomx 500 MHz library

database which is included 328 metabolites. Chenomx NMR

suite is integrated sets of tools allow to identify and quantify

metabolites in NMR spectra. The Chenomx reference libraries

contain hundreds of fully searchable pH compounds models.

All data were converted to the frequency domain and

corrected for phase and baseline, and then the TSP-d4 singlet

peak was adjusted to 0.00 ppm. The target profiling method

required confirmation of changes of a specific metabolite,

followed by a comparison of data from the normal and

cancer samples using Chenomx. The pattern recognition

method required statistical analysis software, and in this

study the SIMCA-P+ 12.0 software package (Umetrics,

Umea, Sweden) was utilized to identify differences in meta-

bolic profiles between normal and cancer data. The spectra

were normalized to the total area and then binned with 0.01

ppm using Chenomx. The water region from 0.5 ppm to 4.5

ppm and reference peak were excluded prior to analysis. The

OPLS-DA analysis was performed to differentiate between

the cancer and normal groups.

Results and Discussion

NMR Spectral Assignments. All 1H NMR spectra were

Fourier-transformed, and phase and baseline were corrected

manually using MestreNova Suite 5.3.1 (Mestrelab Research,

USA). The spectra were referenced and quantified with the

TSP-d4 peak as 0.00 ppm and 2 mM. In the normalization

process, the TSP-d4 (0.0-0.49 ppm) and water (4.5-4.7 ppm)

regions were removed prior to analysis using MestreNova.

1D NMR spectra of cancer and normal tissues obtained from

9 patients with colorectal cancer are presented in Figure 1.

The spectra show metabolites similar to those in previous

reports, with strong peaks from 0.8 to 4.5 ppm. The major

metabolites identified in the spectra included acetate, lactate,

ethylmalonate, choline, o-phosphocholine, myo-inositol,

creatine, taurine, lipid components, several amino acids, and

sugars and these are summarized in Table 1. These meta-

bolites were identified using the Chenomx 500 MHz library

Figure 1. Normal tissue sample was selected as an example for
detailed signal assignment with TSP-d4 (δ 0.00 ppm). The
following metabolites were identified using the Chenomx 500
MHz library (the ethanol signal was eliminated).

Table 1. 1H chemical shift of metabolites found in HR-MAS spectra
of human colon tissues. Abbreviation: LDL/VLDL, low-density
lipoprotein/very low-density lipoprotein. Peak multiplicities: s,
singlet; d, doublet; t, triplet; dd, doublet of doublet; q, quartet; and
m, multiplet

Metabolite δ 1H (multiplicity)

LDL1/VLDL1 0.90 (m)

Ethylmalonate 0.87 (t), 1.71 (p), 3.00 (t)

2-Hydroxybutyrate 0.89 (t), 1.64 (m), 1.73 (m), 3.99 (m)

Isoleucine 0.93 (t), 1.00 (d), 1.25 (m), 1.46 (m), 1.97 (m), 

3.66 (d)

Leucine 0.94 (d), 0.96 (d), 1.70 (m), 3.73 (m)

Valine 0.98 (d), 1.03 (d), 2.26 (m), 3.60 (d)

LDL2/VLDL2 1.29 (m)

Lactate 1.31 (d), 4.11 (q)

Alanine 1.47 (d), 3.78 (q)

Acetate 1.90 (s)

Arginine 1.64 (m), 1.72 (m), 1.90 (m), 3.24 (t), 3.76 (t) 

Lysine 1.42 (m), 1.50 (m), 1.72 (m), 1.87 (m), 1.91 

(m), 3.02 (t), 3.75 (t)

Proline 1.98 (m), 2.03 (m), 2.06 (m), 2.34 (m), 

3.32(m), 3.41 (m), 4.12(m)

N-Acetylglutamine 1.91 (m), 2.02 (s), 2.10(m), 2.31 (t), 2.33 (t), 

4.15(m), 7.94 (d)

N-Acetylglycine 2.03 (s), 3.74 (d), 7.98 (s)

Methionine 2.11 (m), 2.12 (s), 2.19 (m), 2.63 (t), 3.85 (m)

Glutamate 2.04 (m), 2.12 (m), 2.32 (t), 2.36 (t), 3.75 (m)

Glutamine 2.11 (m), 2.14 (m), 2.42 (m), 2.46 (m), 3.77 (t)

Glutathione 2.14 (m), 2.17 (m), 2.52 (m), 2.56 (m), 2.93 

(dd), 2.97 (dd), 3.78 (m), 4.56 (m)

Acetoacetate 2.25 (s), 3.42 (s)

Pyruvate 2.34 (s)

Aspartate 2.67 (dd), 2.80 (dd), 3.89 (dd)

Asparagine 2.85 (m), 2.95 (m), 4.00 (dd),

Creatine 3.01 (s), 3.92 (s)

Cysteine 3.03 (m), 3.09 (m), 3.98 (dd)

Malonate 3.12 (s)

Choline 3.19 (s), 3.50 (m), 4.06(m) 

o-Phosphocholine 3.21 (s), 3.58 (m), 4.16(m) 

Taurine 3.25 (t), 3.42 (t)

Carnitine 2.41 (m), 2.45 (m), 3.21 (s), 3.39 (m)

Betaine 3.24 (s), 3.89 (s)

myo-Inositol 3.27 (t), 3.53 (dd), 3.62 (t), 4.05 (t)

Glycine 3.55 (s)

Glycerol 3.56 (m), 3.65 (m), 3.78 (m)

Galactarate 3.96 (s), 4.26 (s)

Tyrosine 3.04 (m), 3.19 (m), 3.93(m), 6.89 (d), 7.18 (d)

Phenylalanine 3.12 (m), 3.28 (m), 3.99 (m), 7.32 (d), 7.37 

(m), 7.42 (m)

Uracil 5.79 (d), 7.54 (d)

Hypoxanthine 8.18 (s), 8.20 (s)
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database and the literature.2,17-20 Most metabolites for colo-

rectal cancer were identified. The level of many metabolites

was similar for normal and cancer samples. However, the

normal tissue samples had higher levels of LDL1/VLDL1,

LDL2/VLDL2 and lactate than cancer tissue samples,

whereas cancer tissue samples had higher levels of taurine,

myo-inositol and arginine. These findings are similar to

those of previous studies that analyzed the metabolites of

colorectal cancer using GC/MS and HR-MAS NMR.2

Multivariate Analysis. Nine cancer and normal samples

from the same colorectal cancer patients were analyzed by
1H NMR. To achieve multivariate analysis, the regions

corresponding to the water solvent and TSP-d4 were

excluded, and the remaining spectra in the region of 0.5-4.5

ppm were divided into 0.01-ppm bins. The OPLS-DA

analysis was conducting using the centering scale (Ctr scale)

with SIMCA-P+ 12.0. The OPLS-DA score plot was used to

determine whether the metabolic fingerprints of colorectal

tissues were sufficiently unique to identify metabolic markers

for cancer. Figure 2 shows the OPLS-DA score plot for the

first two principal components from the present spectra of

the two groups, namely, normal and cancer. OPLS-DA was

applied for the separation of the two groups, where Hotell-

ing’s T region with a 95% confidence interval was used for

the modeled variation. The values of R2X, R2Y were 0.978

and 0.891, respectively, and Q2, which describes the predict-

ability of the model, was −0.0437. The score plot shows

clearly clustered groups for the normal and cancer samples

except for one of cancer sample. 

Differences of Metabolites Between Normal and Cancer

Tissues. Figure 3 presents the relative concentration of

metabolites in normal and colorectal cancer tissues. The

concentrations of some amino acids (i.e., Arg, Asp, Cys,

Glu, Leu, Lys, and Pro), betaine, taurine, myo-inositol, cho-

line, o-phosphocholine, carnitine, and glutathione were higher

in cancer tissue. In contrast, the concentrations of glycerol,

lactate, N-acetylglutamine, N-acetylglycine, and lipids were

relatively higher in normal tissues. 

Arginine gave multiplets at 1.65, 1.73, 1.90, and 1.92

ppm, and triplets 3.25 and 3.78 ppm. Arginine plays a role in

the energy metabolism of muscle and is also a final inter-

mediate in the urea cycle before the formation of urea via

arginase.37 Taurine is broadly distributed in animal tissue

and involved in biological roles such as antioxidation, osmo-

regulation, membrane stabilization, and bile salt formation.38-40

Increased levels of taurine in cancer may be related to a

more active metabolism and stimulation of glycolysis, as

there is a high energetic demand from cancer cells.41 Myo-

inositol is an important metabolite in regulating vital cellular

functions such as signal transduction, proliferation, and

differentiation.42 Myo-inositol is also a component of cell

membranes and an essential nutrient required by human

cells for growth and survival. Carnitine is formed from

amino acids such as lysine and methionine in the liver and

kidney.43 In this study, carnitine levels were increased in the

cancer samples, which may indicate reduced methionine.

Glutathione is an antioxidant that prevents damage to impor-

tant cellular components caused by reactive oxidative species

such as free radicals.44-46 Our HR-MAS NMR analysis show-

ed an increased level of glutathione in cancer tissues, which

Figure 2. OPLS-DA score plot (comp. 1 vs comp. 2) obtained
from the NMR spectra of 18 tissue samples using SIMCA-P+
12.0. 18 samples were classified into two groups. : cancer :
normal.

▲ ●

Figure 3. (a) Relative concentration of major metabolites repres-
ented in the graph. The concentrations of metabolites were cal-
culated from the integration of peak areas using Chenomx. (b)
Percent change of colorectal cancer tissues metabolite levels relative
to normal tissues. % Change = ([cancer] – [normal])/ [normal] × 100.
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suggests activation of the glutathione synthesis pathway.

Choline-containing compounds are major components of the

cell membrane. Our NMR results showed higher levels of

choline and o-phosphocholine in cancer tissues relative to

normal tissues. Generally, in mammalian tumors, activation

of the CDP-choline pathway and increased choline and

phosphocholine levels are typically observed. This result is

consistent with several previous studies in vitro and in

vivo.48 

Glycerol levels were found to lower in normal tissue in

our analysis, which suggests that the consumption and

degradation of glycerol is decreased in cancer tissues. How-

ever, glycerol was previously shown to increase in cancer

tissue in earlier studies.49 

Lactate gave a doublet at 1.32 ppm and a quadruplet at

4.11 ppm, which is an end product of glycolysis that increases

rapidly during hypoxia and ischemia. Increased lactate

levels have been associated with various cancer.50 In this

study, this result was unexpected and should be addressed

with further research. 

Conclusions

In conclusion, our HR-MAS NMR-based metabolomics

technique showed significant differences between normal

and colorectal cancer in intact tissues without requiring any

extraction process to obtain a 1D proton NMR spectrum.

Our result may provide a good diagnostic method and bio-

marker for colorectal cancer. 
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