Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.090

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis  

Shin, Ha-Eun (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Lee, Seul (College of Pharmacy, Gachon University)
Choi, Yeram (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Park, Sangkyu (Biotechnology Research Institute, Chungbuk National University)
Kwon, Sangil (College of Pharmacy, Gachon University)
Choi, Jun-Kyu (Biotechnology Research Institute, Chungbuk National University)
Seo, Seung-Yong (College of Pharmacy, Gachon University)
Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.30, no.6, 2022 , pp. 576-584 More about this Journal
Abstract
Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.
Keywords
Anticancer effect; Homoisoflavane derivatives of cremastranone; Cell cycle; Apoptosis; Colorectal cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saif, M. W., Katirtzoglou, N. A. and Syrigos, K. N. (2008) Capecitabine: an overview of the side effects and their management. Anti-Cancer Drugs 19, 447-464.   DOI
2 Niu, M. Y., Menard, M., Reed, J. C., Krajewski, S. and Pratt, M. A. (2001) Ectopic expression of cyclin D1 amplifies a retinoic acidinduced mitochondrial death pathway in breast cancer cells. Oncogene 20, 3506-3518.   DOI
3 Pirkmaier, A., Yuen, K., Hendley, J., O'Connell, M. and Germain, D. (2003) Cyclin D1 overexpression sensitizes breast cancer cells to fenretinide. Clin. Cancer Res. 9, 1877-1884.
4 Shim, J. S., Kim, J. H., Lee, J., Kim, S. N. and Kwon, H. J. (2004) Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. 70, 171-173.   DOI
5 Soucie, E. L., Annis, M. G., Sedivy, J., Filmus, J., Leber, B., Andrews, D. W. and Penn, L. Z. (2001) Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725-4736.   DOI
6 Cao, X., Bennett, R. L. and May, W. S. (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J. Biol. Chem. 283, 14490-14496.   DOI
7 du Toit, K., Drewes, S. E. and Bodenstein, J. (2010) The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat. Prod. Res. 24, 457-490.   DOI
8 Basavarajappa, H. D., Lee, B., Lee, H., Sulaiman, R. S., An, H., Magana, C., Shadmand, M., Vayl, A., Rajashekhar, G., Kim, E. Y., Suh, Y. G., Lee, K., Seo, S. Y. and Corson, T. W. (2015) Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem. 58, 5015-5027.   DOI
9 Bustany, S., Cahu, J., Guardiola, P. and Sola, B. (2015) Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway. BMC Cancer 15, 262.   DOI
10 de Gramont, A., Figer, A., Seymour, M., Homerin, M., Hmissi, A., Cassidy, J., Boni, C., Cortes-Funes, H., Cervantes, A., Freyer, G., Papamichael, D., Le Bail, N., Louvet, C., Hendler, D., de Braud, F., Wilson, C., Morvan, F. and Bonetti, A. (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938-2947.   DOI
11 Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 37, 719-727.   DOI
12 Han, E. K., Ng, S. C., Arber, N., Begemann, M. and Weinstein, I. B. (1999) Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4, 213-219.   DOI
13 Gobeil, S., Boucher, C. C., Nadeau, D. and Poirier, G. G. (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 8, 588-594.   DOI
14 Basavarajappa, H. D., Lee, B., Fei, X., Lim, D., Callaghan, B., Mund, J. A., Case, J., Rajashekhar, G., Seo, S.-Y. and Corson, T. W. (2014) Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 9, e95694.   DOI
15 Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.   DOI
16 Kreis, N. N., Louwen, F. and Yuan, J. (2015) Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 34, 1758-1767.   DOI
17 Lin, L.-G., Liu, Q.-Y. and Ye, Y. (2014) Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 80, 1053-1066.   DOI
18 Miller, D. M., Thomas, S. D., Islam, A., Muench, D. and Sedoris, K. (2012) c-Myc and cancer metabolism. Clin. Cancer Res. 18, 5546-5553.   DOI
19 Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI
20 Fernald, K. and Kurokawa, M. (2013) Evading apoptosis in cancer. Trends Cell Biol. 23, 620-633.   DOI
21 Heo, M., Lee, B., Sishtla, K., Fei, X., Lee, S., Park, S., Yuan, Y., Lee, S., Kwon, S., Lee, J., Kim, S., Corson, T. W. and Seo, S. Y. (2019) Enantioselective synthesis of homoisoflavanones by asymmetric transfer hydrogenation and their biological evaluation for antiangiogenic activity. J. Org. Chem. 84, 9995-10011.   DOI
22 Hoffman, B. and Liebermann, D. A. (2008) Apoptotic signaling by cMYC. Oncogene 27, 6462-6472.   DOI
23 Kim, J. H., Kim, J. H., Yu, Y. S., Jun, H.-O., Kwon, H. J., Park, K. H. and Kim, K.-W. (2008) Inhibition of choroidal neovascularization by homoisoflavanone, a new angiogenesis inhibitor. Mol. Vis. 14, 556-561.
24 Kim, J. H., Kim, K. H., Kim, J. H., Yu, Y. S., Kim, Y.-M., Kim, K.-W. and Kwon, H. J. (2007) Homoisoflavanone inhibits retinal neovascularization through cell cycle arrest with decrease of cdc2 expression. Biochem. Biophys. Res. Commun. 362, 848-852.   DOI
25 Marmol, I., Sanchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. J. (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 18, 197.   DOI
26 Smits, V. A. J., Klompmaker, R., Vallenius, T., Rijksen, G., Makela, T. P. and Medema, R. H. (2000) p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J. Biol. Chem. 275, 30638-30643.   DOI
27 Sofer-Levi, Y. and Resnitzky, D. (1996) Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E. Oncogene 13, 2431-2437.
28 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.   DOI
29 Latchman, J., Guastella, A. M. and Tofthagen, C. (2014) 5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: implications for practice. Clin. J. Oncol. Nurs. 18, 581-585.   DOI
30 Lee, B., Basavarajappa, H. D., Sulaiman, R. S., Fei, X., Seo, S.-Y. and Corson, T. W. (2014) The first synthesis of the antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 12, 7673-7677.   DOI
31 Matthews, H. K., Bertoli, C. and de Bruin, R. A. M. (2022) Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74-88.   DOI
32 Mishra, B. B. and Tiwari, V. K. (2011) Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46, 4769-4807. Motokura, T. and Arnold, A. (1993) Cyclin D and oncogenesis. Curr. Opin. Genet. Dev. 3, 5-10.
33 Nguyen, A.-T., Fontaine, J., Malonne, H. and Duez, P. (2006) Homoisoflavanones from Disporopsis aspera. Phytochemistry 67, 2159-2163.   DOI
34 Pelengaris, S., Khan, M. and Evan, G. (2002) c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764-776.   DOI
35 Pfeffer, C. M. and Singh, A. T. (2018) Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448.   DOI
36 Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149.   DOI
37 Taylor, W. R. and Stark, G. R. (2001) Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815.   DOI
38 Van Cutsem, E., Cervantes, A., Nordlinger, B. and Arnold, D.; ESMO Guidelines Working Group (2014) Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii1-iii9.   DOI
39 Van Cutsem, E., Hoff, P., Harper, P., Bukowski, R., Cunningham, D., Dufour, P., Graeven, U., Lokich, J., Madajewicz, S., Maroun, J., Marshall, J. L., Mitchell, E. P., Perez-Manga, G., Rougier, P., Schmiegel, W., Schoelmerich, J., Sobrero, A. and Schilsky, R. L. (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br. J. Cancer 90, 1190-1197.   DOI
40 Xie, Y.-H., Chen, Y.-X. and Fang, J.-Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22.   DOI
41 Zhou, C. X., Zou, L., Mo, J. X., Wang, X. Y., Yang, B., He, Q. J. and Gan, L. S. (2013) Homoisoflavonoids from Ophiopogon japonicus. Helv. Chim. Acta 96, 1397-1405.   DOI
42 El-Elimat, T., Rivera-Chavez, J., Burdette, J. E., Czarnecki, A., Alhawarri, M. B., Al-Gharaibeh, M., Alali, F. and Oberlies, N. H. (2018) Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fitoterapia 127, 201-206.   DOI
43 Schwikkard, S., Whitmore, H., Sishtla, K., Sulaiman, R. S., Shetty, T., Basavarajappa, H. D., Waller, C., Alqahtani, A., Frankemoelle, L., Chapman, A., Crouch, N., Wetschnig, W., Knirsch, W., Andriantiana, J., Mas-Claret, E., Langat, M. K., Mulholland, D. and Corson, T. W. (2019) The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII). J. Nat. Prod. 82, 1227-1239.   DOI
44 Cerquetti, L., Sampaoli, C., De Salvo, M., Bucci, B., Argese, N., Chimento, A., Vottari, S., Marchese, R., Pezzi, V., Toscano, V. and Stigliano, A. (2015) C-MYC modulation induces responsiveness to paclitaxel in adrenocortical cancer cell lines. Int. J. Oncol. 46, 2231-2240.   DOI
45 Chang, B. D., Watanabe, K., Broude, E. V., Fang, J., Poole, J. C., Kalinichenko, T. V. and Roninson, I. B. (2000) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. U.S.A. 97, 4291-4296.   DOI
46 Demain, A. L. and Vaishnav, P. (2011) Natural products for cancer chemotherapy. Microb. Biotechnol. 4, 687-699.   DOI
47 Douillard, J., Cunningham, D., Roth, A., Navarro, M., James, R., Karasek, P., Jandik, P., Iveson, T., Carmichael, J., Alakl, M., Gruia, G., Awad, L. and Rougier, P. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041-1047.   DOI