• Title/Summary/Keyword: Coil protection

Search Result 70, Processing Time 0.028 seconds

Short-circuit Protection Circuit Design for SiC MOSFET Using Current Sensing Circuit Based on Rogowski Coil (Rogowski Coil 기반의 전류 센싱 회로를 적용한 SiC MOSFET 단락 보호 회로 설계)

  • Lee, Ju-A;Byun, Jongeun;Ann, Sangjoon;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2021
  • SiC MOSFETs require a faster and more reliable short-circuit protection circuit than conventional methods due to narrow short-circuit withstand times. Therefore, this research proposes a short-circuit protection circuit using a current-sensing circuit based on Rogowski coil. The method of designing the current-sensing circuit, which is a component of the proposed circuit, is presented first. The integrator and input/output filter that compose the current-sensing circuit are designed to have a wide bandwidth for accurately measuring short-circuit currents with high di/dt. The precision of the designed sensing circuit is verified on a double pulse test (DPT). In addition, the sensing accuracy according to the bandwidth of the filters and the number of turns of the Rogowski coil is analyzed. Next, the entire short-circuit protection circuit with the current-sensing circuit is designed in consideration of the fast short-circuit shutdown time. To verify the performance of this circuit, a short-circuit test is conducted for two cases of short-circuit conditions that can occur in the half-bridge structure. Finally, the short-circuit shutdown time is measured to confirm the suitability of the proposed protection circuit for the SiC MOSFET short-circuit protection.

A Study on Shortcircuit Fault Protection Method Using Rogowski Coil (Rogowski 코일을 이용한 과전류 폴트 차단 기법에 관한 연구)

  • Yoon, Hanjong;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.108-110
    • /
    • 2018
  • This paper proposes shortcircuit fault protection method in a synchronous buck converter using the PCB pattern Rogowski coil. The PCB pattern Rogowski coils are embedded in the gate driver to measure the device currents of the top and bottom side. When shortcircuit occurs in the system, the gate signal is blocked by the proposed fault protection method using the device current. The simulation and experimental results show that the proposed fault protection method is verified in the shortcircuit system.

  • PDF

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

PROTECTION SEQUENCE OF AC/DC CONVERTERS FOR ITER PF MAGNET COILS

  • Oh, Byung-Hoon;Hwang, Churl-Kew;Lee, Kwang-Wang;Jin, Jeong-Tae;Chang, Dae-Sik;Oh, Jong-Seok;Choi, Jung-Wan;Suh, Jae-Hak;Tao, Jun;Song, In-Ho
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The protection sequence of an AC/DC converter for an ITER PF coil system is developed in this study. Possible faults in the coil system are simulated and the results reflected in the design of a sequence to protect the coil and converter. The inductances of the current sharing reactors and thyristor numbers in parallel with the bridge arms are optimized with the designed protection sequence.

Characteristics of Interruption Ability in DC Circuit Breaker using Superconducting Coil (초전도 코일을 이용한 DC 회로 차단기의 차단 능력 특성)

  • Jeong, In-Sung;Choi, Hye-Won;Youn, Jeong-Il;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.215-219
    • /
    • 2019
  • Development of DC interruption technology is being studied actively for enhanced DC grid reliability and stability. In this study, coil type superconductor DC circuit breaker was proposed as DC interruption. It is integration technology that combined current-limiting technique using superconductor and cut-off technique using mechanical DC circuit breaker. Superconductor was applied to the coil type. In simulation, Mayr arc model was applied to realize the arc characteristic in the mechanical DC circuit breaker. PSCAD/EMTDC had used to model and perform the simulation. To find out the protection range of coil type superconductor DCCB, the working operation have analyzed based on the rated voltage of DCCB. The results confirmed that, according to apply the limiting device, the protection range was increased in twice. Therefore, the probability of failure of interruption has lowered significantly.

Measures and Proposal for Korean Solar Water Heating System (한국형 태양열 온수급탕 시스템의 대책과 제안)

  • Kim, Sung-Soo;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.631-636
    • /
    • 2008
  • Solar thermal systems are recently refocused by higher oil prices, but did not completely restore the people's confidence owing to the past bad systems. Several types of solar water heating systems were analyzed in characteristics and some proper systems were proposed under Korean climates and system scale. As a small system, natural circulation system should be installed only in a southern region of Korea, with a freeze protection valve instead of heating coil for freeze protection. In most area of Korea, the forced circulation type with a heat exchange coil inside a thermal storage tank or with a spiral-jacketed storage tank, proposed and verified by the authors, has a merit of stable performance and freeze protection.

A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage (25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험)

  • 홍원표;원종수;이송엽;이승원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF

A Trip Coil Fault Detection of Circuit Breaker (차단기 트립코일 이상감지 장치)

  • Youn, Ju-Houc;Lee, Jong-Hun;Park, Noh-Sik;Lee, Dong-Hea
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • The circuit breaker of power distribution board is essential part for the protection of electrical disaster from load short, trouble of power system. For the normal operation of circuit breaker, trip coil of the circuit breaker can cut the mechanical contact of circuit breaker from the detection of power system troubles. This paper presents a design and experimental results of trip coil fault detection system for the real time monitoring of the circuit breaker. The designed system is consisted by the trip coil fault detector which is connected to the each circuit breaker and remote monitoring unit. The trip coil fault detector can detect the impedance and operating voltage of the trip coil, and the detected values are compared with the normal state. And the remote monitoring unit can be connected to the 32 channels of trip coil fault detectors by serial communication. From the designed system, the fault and normal states of the trip coil can be remotely monitored in real time. The designed system is verified by the practical circuit breaker of power distribution board. And the results shows the effectiveness of the designed system.

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Design Study of LAR Tokamak Reactor with a Self-consistent System Analysis Code

  • Hong, B.G.;Lee, D.W.;Kim, S.K.;Kim, D.H.;Lee, Y.O.;Hwang, Y.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.314-314
    • /
    • 2010
  • The design of the blanket and shield play a key role in determining the size of a reactor since it has an impact on the various reactor components. The blanket should produce enough tritium for tritium self-sufficiency and the shield should provide sufficient protection for the superconducting TF coil. Neutronic optimization of the blanket and the shield is necessary, and we coupled the system analysis with a neutronic calculation to account for the interrelation of the blanket and shield with the plasma performance of a reactor system in a self-consistent manner. By using the coupled system analysis code, the operational space for a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil is investigated with an spect ratio in the range of 1.5 - 2.5. The minimum major radius which satisfies all the physics and engineering requirements increases with the magnetic field at the magnetic axis. A required inboard shield thickness is mainly determined by the requirement on the protection of the TF coil against radiation damage. It is shown that to have a fusion power bigger than 3,000 MW in the LAR tokamak with a superconducting TF coil, a major radius bigger than 4.0 m is required.

  • PDF