• Title/Summary/Keyword: Cohesive strength

Search Result 304, Processing Time 0.029 seconds

Thermal Cycle Reliabilties and Cracking Characteristics of Electroplated Cr/Ni-P Coatings (전해 Cr/Ni-P 도금막의 열 사이클 신뢰성 및 균열거동 분석)

  • Lee, Jina;Son, Kirak;Lee, Kyu Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.133-140
    • /
    • 2019
  • The effects of thermal cycle conditions on the bonding strength and crack propagation behaviors in electroplated Cr/electroplated Ni-P coatings were systematically evaluated. 1st heat treatment was performed at 500℃ for 3 hours after electroplating Ni-P, and then, 2nd heat treatment was performed at 750℃ for 6 hours after electroplating Cr. The measured bonding strength by ASTM C633 were around 25.6 MPa before thermal cycling, while it increased to 47.6 MPa, after 1,000 cycles. Increasing thermal cycles led to dominant fail mode with cohesive failure inside adhesive, which seemed to be closely related to the increasing bonding strength possibly not only due to higher Cr surface roughness, but also to penetrated channeling crack density. Also, increasing density of penetrated channeling cracks in electroplating Cr layer led to slightly stronger bonding strength due to mechanical interlocking effects of adhesive inside channeling cracks.

Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks

  • Turk, Ayse Gozde;Ulusoy, Mubin;Yuce, Mert;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.454-459
    • /
    • 2015
  • PURPOSE. To determine whether the fracture strengths and failure types differed between metal and zirconia frameworks veneered with pressable or layering ceramics. MATERIALS AND METHODS. A phantom molar tooth was prepared and duplicated in 40 cobalt-chromium abutments. Twenty metal (IPS d.SIGN 15, Ivoclar, Vivadent, Schaan, Liechtenstein) and 20 zirconia (IPS e.max ZirCAD, Ivoclar) frameworks were fabricated on the abutments. Each framework group was randomly divided into 2 subgroups according to the veneering material: pressable and layering ceramics (n=10). Forty molar crowns were fabricated, cemented onto the corresponding abutments and then thermocycled ($5-55^{\circ}C$, 10,000 cycles). A load was applied in a universal testing machine until a fracture occurred on the crowns. In addition, failure types were examined using a stereomicroscope. Fracture load data were analyzed using one-way ANOVA and Tukey HSD post-hoc tests at a significance level of 0.05. RESULTS. The highest strength value was seen in metal-pressable (MP) group, whereas zirconia-pressable (ZP) group exhibited the lowest one. Moreover, group MP showed significantly higher fracture loads than group ZP (P=.015) and zirconia-layering (ZL) (P=.038) group. No significant difference in fracture strength was detected between groups MP and ML, and groups ZP and ZL (P>.05). Predominant fracture types were cohesive for metal groups and adhesive for zirconia groups. CONCLUSION. Fracture strength of a restoration with a metal or a zirconia framework was independent of the veneering techniques. However, the pressing technique over metal frameworks resisted significantly higher fracture loads than zirconia frameworks.

THE EFFECT OF ADHESIVE PROPERTY ON MICROTENSILE BOND STRENGTH TO HUMAN DENTIN (상아질 접착제의 성상이 미세인장결합강도에 미치는 영향)

  • Kim, Hyoun-Jin;Hur, Bock;Kim, Hyun-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2004
  • The purposes of this study were to evaluate the effect of adhesive property on microtensile bond strength and to determine the failure mode. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. The dentin was etched with 37% phosphoric acid. The following adhesives were applied to the etched dentin to manufacturer's directions: Scotchbond Multi-Purpose in group SM, Prime&Bond NT in group NT, Scotchbond Multi-Purpose followed by Tetric-flow in group TR. After adhesive application, a cylinder of resin-based composite was built up on the occlusal surface. Each tooth was sectioned vertically to obtain the $1{\;}{\times}{\;}1\textrm{mm}^2$ "sticks". Microtensile bond strength were determined. Each specimen was observed under stereomicroscope and scanning electron microscope (SEM) to examine the failure mode. Data were analyzed using one way ANOVA. The results of this study were as follows:1. The microtensile bond strength value were:group SM ($18.98{\pm}3.01MPa$). group NT ($16.01{\pm}4.82MPa$) and group TR ($17.56{\pm}3.22MPa$). No significant statistical differences were observed among the groups (P>0.05). 2. Most of specimens showed mixed failure. In group TR, there was a higher number of specimens showing areas of cohesive failure in resin.

A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS (타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교)

  • Kim, Ji-Hye;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

Applicability of IGM theory Partial Drilled Shaft constructed on Granite Rocks (화강풍화암에 시공된 부분현장타설말뚝의 IGM이론의 적용성)

  • Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • In this study, partial drilled shafts (Bottom Cast-in-place Concrete pile) were applied to the pilot test site to ensure the bearing capacity; we used the skin friction force in the IGM to analyze the feasibility of the application of IGM theory. The soil characteristics were analyzed in cohesive, non-smear, and smooth conditions for the application of the IGM theory via geotechnical investigation and measurement of the disturbance and surface roughness. Static load and load transfer tests were conducted to calculate the allowable bearing capacity and the skin friction force by depth. The skin friction force increased with increase in the depth and standard settlement, showing a very high correlation. In addition, because the unconfined strength ($q_u$), which is the most important parameter in the cohesive IGM, cannot be measured in a weathered granite area, the static load and load transfer test results and the N value were used to obtain $q_u$.

Evaluation of the Resilient and Permanent Behaviors of Cohesive Soils (점성토의 회복 및 영구변형 특성 평가)

  • SaGong, Myung;Kim, Dae-Hyeon;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • Resilient modulus has been used for characterizing the stress-strain behavior of subgrade soils subjected to traffic loadings. With the recent release of the M-E Design Guide, highway agencies are further encouraged to implement the resilient modulus test to improve subgrade design. The subgrade design for the trackbed, however, is primarily relying on the static test results such as $K_{30}$ and deformation modulus, Ev. Therefore applicability of the resilient modulus for the design of trackbed needs to be evaluated. In this study, physical property tests, unconfined compressive tests and resilient modulus tests were conducted to assess the resilient and permanent strain behavior of 14 cohesive subgrade soils. A predictive model for estimating the resilient modulus is proposed based on the results of unconfined compressive tests and tangent elastic modulus, unconfined compressive strength, failure strain, secant modulus at peak, and yield strain. The predicted resilient moduli using the predictive models compared satisfactorily with measured ones. Although the permanent strain occurs during the resilient modulus test, the permanent behavior of subgrade soils is currently not taken into consideration.

Lateral Earth Pressures Acting on Piles in Cohesive Soil (점토지반(粘土地盤)속의 말뚝에 작용(作用)하는 측방토압(側方土壓))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1982
  • A theoretical equation is presented to estimate lateral earth pressures acting on piles in a row in cohesive soil. Then. a series of model tests are carried out for various conditions of the piles and the soil to check the validity of the theoretical equation. As a result of the model tests, the validity of an assumption on the plastic state of soil made in the theoretical derivation and the significance of the theoretical values are clarified. And. the experimental and theoretical values give very good agreements for various kinds of soil strength, pile diameters and intervals between piles. Consequently, the theoretical equation can be used to estimate the lateral earth pressures acting on piles in a row when the soil just around piles become a plastic state.

  • PDF

Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates (오픈 홀 인장 복합 재료 적층판에서 층간 및 내부 손상에 대한 점진적 손상 모델링)

  • Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Open-hole tensile tests are usually performed to measure the tensile strengths of composites as they are an essential parameter for designing composite structures. However, correctly modeling the tensile test is extremely challenging as it involves various damages such as fiber and matrix damage, delamination, and debonding damage between the fiber and matrix. Therefore, a progressive damage model was developed in this study to estimate the in-plane failure and delamination between the fiber and matrix. The Hashin damage model and cohesive zone approach were used to model ply and delamination failures. The results of the present model were compared with previously published experimental and numerical findings. It was observed that neglecting delamination during finite element analysis led to overestimation of tensile strength.

Analysis on Relation of S-wave Velocity and N Value for Stratums in Chungcheong Buk-do (충청지역 지층별 전단파속도와 N값의 상관관계 분석)

  • Do, Jongnam;Hwang, Piljae;Chung, Sungrae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.13-22
    • /
    • 2011
  • In this study, features of correlation between S-velocity and N value are derived from 9 suspension PS layers in Chungcheong Buk-do. S-velocity to be measured on Chungcheong Buk-do is classified into 5 as conditions of stratum that are ; cohesive soil layer, sandy soil layer, gravel layer, weathering soil layer, weathered rock layer. Each correlation formulas between N value by SPT and S-velocity is proposed from these classifications. And correlation formula for whole soil body except weathered rock layer also is proposed for reference. Corelation formulas developed this study formed square expression considering existing formulas produced internationally. Strength parameter converted to linear if N value is more than 50. Features of proposed formula which came up with comparative analysis of international result of cohesive soil layer and sandy soil layer and gravel layer show similar to existing ones. But there is deference that result of correlation formula for weathered rock layer is a little smaller than domestic formula's one. Because correlations of weathered rock layer above the N value of 50 is converted into a linear formation.

Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate (Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향)

  • Min, Kyoung-Jin;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.