DOI QR코드

DOI QR Code

Analysis on Relation of S-wave Velocity and N Value for Stratums in Chungcheong Buk-do

충청지역 지층별 전단파속도와 N값의 상관관계 분석

  • 도종남 (한양대학교 대학원 건설환경공학과) ;
  • 황필재 (한국토지주택공사 해외사업처) ;
  • 정성래 (한양대학교 대학원 건설환경공학과) ;
  • 천병식 (한양대학교 공과대학 건설환경공학과)
  • Received : 2011.04.11
  • Accepted : 2011.09.22
  • Published : 2011.10.01

Abstract

In this study, features of correlation between S-velocity and N value are derived from 9 suspension PS layers in Chungcheong Buk-do. S-velocity to be measured on Chungcheong Buk-do is classified into 5 as conditions of stratum that are ; cohesive soil layer, sandy soil layer, gravel layer, weathering soil layer, weathered rock layer. Each correlation formulas between N value by SPT and S-velocity is proposed from these classifications. And correlation formula for whole soil body except weathered rock layer also is proposed for reference. Corelation formulas developed this study formed square expression considering existing formulas produced internationally. Strength parameter converted to linear if N value is more than 50. Features of proposed formula which came up with comparative analysis of international result of cohesive soil layer and sandy soil layer and gravel layer show similar to existing ones. But there is deference that result of correlation formula for weathered rock layer is a little smaller than domestic formula's one. Because correlations of weathered rock layer above the N value of 50 is converted into a linear formation.

본 연구는 충청 지역에서 측정된 전단파 속도를 지층별로 점성토층, 사질토층, 자갈층, 풍화토층, 풍화암층으로 분류하여 표준관입시험 N값과 전단파 속도의 상관관계식을 제안하였으며, 참고적으로 풍화암층을 제외한 전체토층의 상관관계식을 도출하였다. 제안된 상관관계식은 국내외 기존 제안식을 고려하여 모두 멱함수로 산정하였으며 지반강도의 경우 N값이 50 이상일 경우에는 선형으로 환산하여 적용하였다. 금번 연구에서 제안한 관계식을 국내외 사례와 지층별로 비교 분석한 결과 점성토층, 사질토층, 자갈층, 풍화토층의 경우에는 유사한 특성을 보이고 있음을 알 수 있었다. 다만, 풍화암층에 대한 상관관계식의 경우 국내 관계식과 다소 낮은 결과치를 나타내는 차이가 있음을 확인하였다. 풍화암층의 경우 상관관계식 산정에 있어 N값이 50 이상일 경우는 선형으로 환산하여 적용함에 따라 지반 강도가 높은 지층인 풍화암층에서 차이가 발생한 것으로 파악된다.

Keywords

References

  1. 강영종, 한택희, 윤상열(2001), 단지조성에 따른 시설물의 내진 연구, 한국지진공학회, 한국토지주택공사 연구보고서, p. 78, p. 85.
  2. 김동수, 방은석, 서원석(2003), 표준관입시험을 이용한 업홀시 험에서 전단파 속도 주상도의 도출, 한국지반공학회 논문집, Vol. 19, No. 2, pp. 39-50.
  3. 김영완(2004), SPS 검층을 이용한 지반특성 연구, 석사학위논문, 전남대학교, pp. 11-19.
  4. 선창국, 정충기, 김동수(2007), 얕은 심도 전단파속도 분포를 이용한 30m 심도 평균 전단파속도의 결정, 한국지진공학회 논문집, Vol. 11, No. 1, pp. 45-57.
  5. 장승필, 고현무, 박순규, 김동수(2002), 주요시설물 내진설계기준의 재정비, 한국지진공학회, 건설교통부 2000년 건설교통기술혁신사업 최종보고서, pp. 17-28.
  6. 정남훈(2009), 부유형 속도검층에 의한 전단파 속도 거동, 박사학위논문, 단국대학교, p. 20, pp. 29-95.
  7. 정종석, 김동수, 박종배, 임해식, 박광열, 오원근(2009), 내진설계 시 합리적인 지반분류를 위한 전단파 속도 측정 및 적용방안, 한국토지주택공사 토지주택연구원 연구보고서, pp. 9-79, p. 85, pp. 261-314.
  8. 한국지반공학회(2009), 지반기술자를 위한 지질 및 암반공학, 지반공학특별시리즈 1, 씨아이알, pp. 3-52.
  9. 한국토지주택공사 LH(2008), 지반정보편람 제3권 강원, 대전․ 충남, 충북, 한국토지주택공사, pp. 919-1120.
  10. Athanasopoulos, G. A., Xenaki, V. C.(1994), Experimental Investigation of the Interaction Mechanism at the EPS Geofoamsand Interface by Shear Testing, Geosynthetics International, Vol. 8, No. 6, pp. 471-499.
  11. Crespellani T., Garzonio C. A., Midiai C. & Vannucchi G.(1997), A Methodology for the Seismic Microzonation of Historical Nuclei in Central Italy, European Earthquake Eng, Vol. 11, No. 1, pp. 46-60.
  12. Hasancebi, N., Ulusay, R. (2007), Empirical Correlations between Shear Wave Velocity and Penetration Resistance for Ground Shaking Assessments, Bulletin of Engineering Geology and the Environment, Vol. 66, No, 3, pp. 203-213. https://doi.org/10.1007/s10064-006-0063-0
  13. Imai, T., Tonuchi, K.(1982), Correlation of SPT N-value with S-wave Velocity and Shear Modulus, Proc. of the 2nd European Symposium on Petration Testing, Amsterdam, pp. 67-72.
  14. Jafari, M. K., Asghari, A., Rahmani, I.(1997), Empirical Correlation between Shear Wave Velocity(Vs) and SPT-N Value for South of Tehran Soils, 4th Proceeding of International Conference on Civil Engineering, Tehran, Iran, Vol. 2, pp. 355-365.
  15. Jason T. DeJong(2007), Site Characterization-Guidelines for Estimatings Vs Based on In-Situ Tests Stage 1-Interim Report, University of California, Davis, pp. 7-15, pp. 17-18.
  16. Jinan, Z.(1987), Correlation Between Seismic Wave Velocity and the Number of Blow of SPT and Depth, Selected Papers from the Chinese, Journal of Geotechncial Engineering, American Society of Civil Engineers, Vol. 113, No. 2,pp. 92-100.
  17. Lee, S. H.(1992), Analysis of the Multicollinearity of Regression Equations of Shear Wave Velocities, Soils and Foundations, Vol. 32, No. 1, pp. 205-214. https://doi.org/10.3208/sandf1972.32.205
  18. Mayne, P.W. and Rix, G.J.(1993), Gmax-qc Relationships For Clays, Geotechnical Testing Jounal, Vol. 16, No. 1, pp. 54-60. https://doi.org/10.1520/GTJ10267J
  19. Mayne, P. W., and Rix, G. J.(1995), Correlations between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, Vol. 35, No. 2, pp. 107-110. https://doi.org/10.3208/sandf1972.35.2_107
  20. Ohasaki Y, Iwasaki R. (1973), On Dynamic Shear Moduli and Poisson's Ratio of Soil Deposits, Soils and Foundations, Vol. 13, No. 4, pp. 61-73. https://doi.org/10.3208/sandf1972.13.4_61
  21. Ohta, Y., Goto, N.(1978), Empirical Shear Wave Velocity Equation in Terms of Characteristic Soil Index, Earthquake Engineering and Structural Dynamics, Vol. 6, No. 2, pp. 167-187. https://doi.org/10.1002/eqe.4290060205
  22. Okamoto, S., Kokusho, T., Yoshida, Y. and Kusunoki, K.(1989), Comparison of Surface Vs. Subsurface Wave Source for P-S Logging in Sand Layer, Proc. 44th Annual Conf. JSCE, Vol. 3, pp. 996-997.
  23. Rix, G. J. and Tokoe, K. H.(1991), Correlation of Initial Tangent Modulus and Cone Resistance, Calibration Chamber Testing, Elsevier, New York, pp. 351-362.
  24. Sun, C. G., Kim, H. J. and Chung, C. K.(2008), Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data, Earthquake Engineering Society of Korea, Vol. 12, No. 4, pp. 4-6.