• 제목/요약/키워드: Cohen-Macaulayness

검색결과 7건 처리시간 0.014초

ON RELATIVE COHEN-MACAULAY MODULES

  • Zhongkui Liu;Pengju Ma;Xiaoyan Yang
    • 대한수학회지
    • /
    • 제60권3호
    • /
    • pp.683-694
    • /
    • 2023
  • Let a be an ideal of 𝔞 commutative noetherian ring R. We give some descriptions of the 𝔞-depth of 𝔞-relative Cohen-Macaulay modules by cohomological dimensions, and study how relative Cohen-Macaulayness behaves under flat extensions. As applications, the perseverance of relative Cohen-Macaulayness in a polynomial ring, formal power series ring and completion are given.

ON MULTISECANT PLANES OF LOCALLY NON-COHEN-MACAULAY SURFACES

  • Lee, Wanseok;Park, Euisung
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1323-1330
    • /
    • 2017
  • For a nondegenerate projective irreducible variety $X{\subset}{\mathbb{P}}^r$, it is a natural problem to find an upper bound for the value of $${\ell}_{\beta}(X)=max\{length(X{\cap}L){\mid}L={\mathbb{P}}^{\beta}{\subset}{\mathbb{P}}^r,\;{\dim}(X{\cap}L)=0\}$$ for each $1{\leq}{\beta}{\leq}e$. When X is locally Cohen-Macaulay, A. Noma in [10] proves that ${\ell}_{\beta}(X)$ is at most $d-e+{\beta}$ where d and e are respectively the degree and the codimension of X. In this paper, we construct some surfaces $S{\subset}{\mathbb{P}}^5$ of degree $d{\in}\{7,{\ldots},12\}$ which satisfies the inequality $${\ell}_2(S){\geq}d-3+{\lfloor}{\frac{d}{2}}{\rfloor}$$. This shows that Noma's bound is no more valid for locally non-Cohen-Macaulay varieties.

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF

STRONG SHELLABILITY OF SIMPLICIAL COMPLEXES

  • Guo, Jin;Shen, Yi-Huang;Wu, Tongsuo
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1613-1639
    • /
    • 2019
  • Imposing a strong condition on the linear order of shellable complexes, we introduce strong shellability. Basic properties, including the existence of dimension-decreasing strong shelling orders, are developed with respect to nonpure strongly shellable complexes. Meanwhile, pure strongly shellable complexes can be characterized by the corresponding codimension one graphs. In addition, we show that the facet ideals of pure strongly shellable complexes have linear quotients.

ALMOST COHEN-MACAULAYNESS OF KOSZUL HOMOLOGY

  • Mafi, Amir;Tabejamaat, Samaneh
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.471-477
    • /
    • 2019
  • Let (R, m) be a commutative Noetherian ring, I an ideal of R and M a non-zero finitely generated R-module. We show that if M and $H_0(I,M)$ are aCM R-modules and $I=(x_1,{\cdots},x_{n+1})$ such that $x_1,{\cdots},x_n$ is an M-regular sequence, then $H_i(I,M)$ is an aCM R-module for all i. Moreover, we prove that if R and $H_i(I,R)$ are aCM for all i, then R/(0 : I) is aCM. In addition, we prove that if R is aCM and $x_1,{\cdots},x_n$ is an aCM d-sequence, then depth $H_i(x_1,{\cdots},x_n;R){\geq}i-1$ for all i.