Browse > Article
http://dx.doi.org/10.4134/BKMS.b160564

ON MULTISECANT PLANES OF LOCALLY NON-COHEN-MACAULAY SURFACES  

Lee, Wanseok (Department of Applied Mathematics Pukyong National University)
Park, Euisung (Department of Mathematics Korea University)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.4, 2017 , pp. 1323-1330 More about this Journal
Abstract
For a nondegenerate projective irreducible variety $X{\subset}{\mathbb{P}}^r$, it is a natural problem to find an upper bound for the value of $${\ell}_{\beta}(X)=max\{length(X{\cap}L){\mid}L={\mathbb{P}}^{\beta}{\subset}{\mathbb{P}}^r,\;{\dim}(X{\cap}L)=0\}$$ for each $1{\leq}{\beta}{\leq}e$. When X is locally Cohen-Macaulay, A. Noma in [10] proves that ${\ell}_{\beta}(X)$ is at most $d-e+{\beta}$ where d and e are respectively the degree and the codimension of X. In this paper, we construct some surfaces $S{\subset}{\mathbb{P}}^5$ of degree $d{\in}\{7,{\ldots},12\}$ which satisfies the inequality $${\ell}_2(S){\geq}d-3+{\lfloor}{\frac{d}{2}}{\rfloor}$$. This shows that Noma's bound is no more valid for locally non-Cohen-Macaulay varieties.
Keywords
multisecant space; locally Cohen-Macaulayness; rational surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.-A. Bertin, On the regularity of varieties having an extremal secant line, J. Reine Angew. Math. 545 (2002), 167-181.
2 M. Brodmann, W. Lee, E. Park, and P. Schenzel, Projective varieties of maximal sectional regularity, J. Pure Appl. Algebra 221 (2017), no. 1, 98-118.   DOI
3 M. Brodmann, W. Lee, E. Park, and P. Schenzel, On surfaces of maximal sectional regularity, Taiwanese J. Math. 21 (2017), no. 3, 549-567.   DOI
4 M. Brodmann and P. Schenzel, Projective surfaces of degree r + 1 in projective r-space and almost non-singular projections, J. Pure Appl. Algebra 216 (2012), no. 10, 2241-2255.   DOI
5 M. Decker, G. M. Greuel, and H. Schonemann, Singular 3-1-2 - A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2011.
6 D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, New York, 1995.
7 L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491-506.   DOI
8 S. Kwak, Smooth projective varieties with extremal or next to extremal curvilinear secant subspaces, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3553-3566.   DOI
9 R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423-429.   DOI
10 A. Noma, Multisecant lines to projective varieties, Projective varieties with unexpected properties, 349-359, Walter de Gruyter GmbH and Co. KG, Berlin, 2005.
11 H. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321-332.   DOI