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ON RELATIVE COHEN-MACAULAY MODULES

Zhongkui Liu, Pengju Ma, and Xiaoyan Yang

Abstract. Let a be an ideal of a commutative noetherian ring R. We

give some descriptions of the a-depth of a-relative Cohen-Macaulay mod-

ules by cohomological dimensions, and study how relative Cohen-Macaul-
ayness behaves under flat extensions. As applications, the perseverance

of relative Cohen-Macaulayness in a polynomial ring, formal power series
ring and completion are given.

1. Introduction

The theory of Cohen-Macaulay rings and modules is among the most deep
influential parts of commutative algebra, with numerous applications in com-
mutative algebra, algebraic geometry and combinatorics and so on; more de-
tails see [6]. In the words of Hochster, ‘Life is really worth living in a Cohen-
Macaulay ring’ (see [8, p. 887]).

Let (R,m) be a local ring. A finitely generated R-module M is said to be
Cohen-Macaulay if depthRM = dimRM . These notions have been extended to
non-local rings. Let a be a proper ideal of an arbitrary noetherian ring R. A
finitely generated R-module M with M ̸= aM is said to be a-relative Cohen-
Macaulay, a-RCM, if depth(a,M) = cd(a,M). This notion as a ganaralization
of classical Cohen-Macaulay modules was introduced by Zargar and Zakeri in
[10] and its study was continued in [2, 7, 9, 11].

It is well-known that, for a Cohen-Macaulay R-module M over a local ring
(R,m), depthRM = dimR/p for all p ∈ AssRM and the depth with respect to
an arbitrary ideal a ⊆ m is given by its codimension, that is, depth(a,M) =
dimRM − dimRM/aM . The first aim of this paper is to consider the the
following question:
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Question 1. Can we use cd(a, R/p) of an a-RCM module M to calculate
depth(a,M)?

In Section 1, we show that, for an a-RCM module M , depth(a,M) =
cd(a, R/p) for all p ∈ AssRM . As an applications of this equality, we show that,
for two ideals a, b with b ⊆ a, if cd(b,M) = ara(b,M), then depth(b,M) =
cd(a,M)− cd(a,M/bM).

Bruns and Herzog [6, Theorem 2.1.7] showed that the Cohen-Macaulay prop-
erty is stable under flat local extensions: Let f : (R,m) → (S, n) be a homomor-
phism of local rings. Suppose that M is a finitely generated R-module and N
is an R-flat finitely generated S-module. Then M ⊗R N is a Cohen-Macaulay
S-module if and only if M is a Cohen-Macaulay R-module and N/mN is a
Cohen-Macaulay S-module. The second aim of this paper is to consider the
following question:

Question 2. Is there an analogous theorem for the a-relative Cohen-Macaul-
ayness?

In Section 2, we give a positive answer for Question 2 under some conditions
and study the perseverance of relative Cohen-Macaulayness under flat exten-
sions (not necessarily local). It is discovered that relative Cohen-Macaulay
modules with respect to the Jacosbson radical enjoy many interesting proper-
ties which are analogous to those of Cohen-Macaulay modules over local rings.

Unless stated to the contrary we assume throughout this paper that R is
a commutative Noetherian ring which is not necessarily local. Next, we recall
some notions and preliminaries which we will need later.

Regular sequence. Let M be a finitely generated R-module. An element x of
R is a nonzerodivisor on M if xm = 0 implies m = 0; if in addition xM ̸= M ,
then x is said to be M -regular. A sequence x = x1, . . . , xd of elements in R
is an M -regular sequence if xi is a nonzerodivisor on M/(x1, . . . , xi−1)M for
1 ≤ i ≤ d and xM ̸= M .

Associated prime and support. We write SpecR for the set of prime ideals
of R. For an ideal a of R, set

V(a) := {p ∈ SpecR | a ⊆ p}.

Let M be an R-module. A prime ideal p of R is said to be an associated prime
of M if it is the annihilator of an element in M . This is equivalent to M
containing the cyclic submodule R/p. The set of all associated prime ideals of
M is denoted by AssRM . Fix p ∈ SpecR, let Mp denote the localization of M
at p. The support of M is the set

SuppRM := {p ∈ SpecR |Mp ̸= 0}.

It is well known that AssRM ⊆ SuppRM .
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Dimension. Let a be a proper ideal of R andM a finitely generated R-module.
The dimension of M , denoted by dimRM , is

dimRM := sup{dimR/p | p ∈ SuppRM}.

The height of M with respect to a, denoted by htM (a), is

htM (a) := inf{dimRp
Mp | p ∈ SuppRM ∩V(a)}.

The n-th local cohomology module of M is defined as

Hn
a (M) := lim

−→
t

ExtnR(R/at,M).

The reader can refer to [5] for more details about local cohomology.
The cohomological dimension of M with respect to a, denoted by cd(a,M),

is

cd(a,M) := sup{n ∈ Z |Hn
a (M) ̸= 0}.

The cohomological dimension of the zero module is −∞. One easily sees that
cd(a,M) = −∞ if and only if M = aM .

The finiteness dimension of M with respect to a, denoted by fa(M), is

fa(M) : = inf{n ∈ Z |Hn
a (M) is not finitely generated}

= inf{n ∈ Z |a ⫅̸
√
(0 : Hn

a (M))}.

Note that fa(M) is either a positive integer or ∞ since H0
a(M) is finitely gen-

erated.

Depth. Let a be a proper ideal of R and M a finitely generated R-module.
The depth of M with respect to a, denoted by depth(a,M), is

depth(a,M) : = inf{n ∈ Z |ExtnR(R/a,M) ̸= 0}
= inf{n ∈ Z |Hn

a (M) ̸= 0}.

In particular, if (R,m) is local, the depth(m,M) is denoted by depthRM .
The minimum adjusted depth of M with respect to a, denoted by λa(M), is

λa(M) := inf{depthRp
Mp + ht(

a+ p

p
) | p ∈ SpecR \V(a)}.

It follows from [5, Theorem 9.3.5] that fa(M) ≤ λa(M).

2. Characterizations of the a-depth of a-RCM modules

In this section, we provide some descriptions of the a-depth of a-relative
Cohen-Macaulay modules by cohomological dimensions.

Definition ([2]). Let a be an ideal of R and M a finitely generated R-module
with M ̸= aM . The module M is said to be a-relative Cohen-Macaulay, a-
RCM, if

depth(a,M) = cd(a,M).
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Let c = cd(a,M). We call a sequence x1, . . . , xc ∈ a an a-relative system of
parameters, a-Rs.o.p, of M if√

⟨x1, . . . , xc⟩+AnnRM =
√
a+AnnRM.

The arithmetic rank of an ideal a of R with respect to a module M , denoted
by ara(a,M), is defined as the infimum of the integers n such that there exist
x1, . . . , xn ∈ R satisfying√

⟨x1, . . . , xn⟩+AnnRM =
√
a+AnnRM.

Remark 2.1. Let a be a proper ideal of R and M a non-zero finitely generated
R-module.

(1) If M is an a-RCM R-module, then M ̸= aM implies that cd(a,M) ̸=
−∞. Thus, depth(a,M) = cd(a,M) ≥ 0.

(2) If (R,m) is a local ring, then the class of m-RCM coincide with the class
of Cohen-Macaulay modules. In fact, one has M is a Cohen-Macaulay module
if and only if depthRM = dimRM if and only if depth(m,M) = cd(m,M) if
and only if M is m-RCM.

(3) Suppose that a is contained in the Jacosbson radical J(R) of R and
x = x1, . . . , xn ∈ a an a-Rs.o.p of M with a = ⟨x ⟩. If cd(a,M) = ara(a,M) =
n > 0, thenM is a-RCM if and only ifM/⟨x1, . . . , xi⟩M is a-RCM for 1 ≤ i ≤ n
by [2, Lemma 2.4], [2, Theorem 3.3] and [6, Proposition 1.2.10]. In particalar,
if (R,m) is a local ring and a = m, then M is a Cohen-Macaulay R-module if
and only if M/⟨x1, . . . , xi⟩M is a Cohen-Macaulay R-module for any 1 ≤ i ≤ n.

(4) If cd(a,M) = 0, then 0 ≤ depth(a,M) ≤ cd(a,M) = 0. So M is a-RCM.

Lemma 2.2 ([4, Theorem 2.2]). Let a be an ideal of R, M and N two finitely
generated R-modules with SuppRN ⊆ SuppRM . Then

cd(a, N) ≤ cd(a,M).

In particular, if SuppRN = SuppRM , then cd(a, N) = cd(a,M).

Corollary 2.3. Let a be an ideal of R and M a finitely generated R-module.
For any p ∈ SuppRM , one has

cd(a,M/pM) = cd(a, R/p) ≤ cd(a,M).

Proof. Since SuppRM/pM = V(p) ∩ SuppRM = V(p) ⊆ SuppRM , it follows
from Lemma 2.2 that cd(a,M/pM) = cd(a, R/p) ≤ cd(a,M), as desired. □

We have the following useful remark.

Remark 2.4 ([3, Remark 3.1]). If M ̸= aM and htM (a) > 0, then

depth(a,M) ≤ fa(M) ≤ htM (a) ≤ cd(a,M) ≤ ara(a,M) ≤ dimRM.

We now present the first main theorem of this section, which is a more
general version of [6, Theorem 2.1.2(a)].
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Theorem 2.5. Let a be an ideal of R and M an a-RCM R-module with
cd(a,M) = c.

(1) If c = 0, then

depth(a,M) = cd(a, R/p) = htM (a) = 0 for all p ∈ AssRM ∩V(a).

(2) If c > 0, then

depth(a,M) = cd(a, R/p) = htM (a) = fa(M) = λa(M) = c for all p ∈ AssRM.

Proof. (1) If c = 0, then HomR(R/a,M) ̸= 0, it follows that AssRM∩V(a) ̸= ∅.
Let p ∈ AssRM ∩V(a). Then 0 ̸= M/pM is a-torsion, and hence Hi

a(M/pM) =
0 for i > 0. Thus 0 = cd(a,M/pM) = cd(a, R/p) ≤ cd(a,M) = 0 by Corollary
2.3. Also 0 ≤ htM (a) ≤ cd(a,M) = 0, as required.

(2) If c > 0, then HomR(R/a,M) = 0, and so AssRM ∩ V(a) = ∅. Let
p ∈ AssRM . Then depthRp

Mp = 0. One has the following (in)equalities

cd(a,M) = htM (a)

= fa(M)

≤ λa(M)

≤ depthRp
Mp + ht(

a+ p

p
)

≤ cd(
a+ p

p
, R/p)

= cd(a, R/p)

≤ cd(a,M),

where the first, the second and the fifth ones are by Remark 2.4, the third one
is by [5, Theorem 9.3.5], the forth one is by the definition, the sixth one is by
the isomorphism Hi

a+p/p(R/p) ∼= Hi
a(R/p) for any i ≥ 0, and the seventh one

is by Corollary 2.3. □

According to Theorem 2.5, one can obtain the following classical result about
Cohen-Macaulay modules (see [6, Theorem 2.1.2(a)]).

Corollary 2.6. Let (R,m) be a local ring and M a Cohen-Macaulay R-module.
Then

depthRM = dimR/p for all p ∈ AssRM.

The following is the second main theorem of this section, which is a gener-
alization of [6, Theorem 2.1.2(b)].

Theorem 2.7. Let a, b be two ideals of R with b ⊆ a ⊆ J(R) and M an a-RCM
R-module. If cd(b,M) = ara(b,M), then M is b-RCM and

depth(b,M) = cd(a,M)− cd(a,M/bM).
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Proof. First, we show that the equality holds. If cd(a,M) = 0, then 0 ≤
cd(a,M/bM) ≤ cd(a,M) = 0 by Corollary 2.3, the equality holds. Next
suppose that cd(a,M) > 0 and do induction on depth(b,M). If depth(b,M) =
0, then HomR(R/b,M) ̸= 0, and so

∅ ≠ AssRHomR(R/b,M) = AssR(M) ∩V(b) ⊆ SuppRM ∩V(b).

Set p ∈ SuppRM ∩V(b). There exists q ∈ AssR(M) ∩V(b) such that q ⊆ p, it
follows from Theorem 2.5 that

cd(a,M) = cd(a, R/q) = cd(a,M/qM).

Since SuppRM/qM ⊆ SuppRM/bM , cd(a,M/qM) ≤ cd(a,M/bM) by Lemma
2.2. So

cd(a,M) = cd(a, R/q) ≤ cd(a,M/bM) ≤ cd(a,M).

Thus the equality holds. If depth(b,M) > 0, then we can choose x ∈ b that
is M -regular, which implies that M/xM is a-RCM as x ∈ a. It follows from
[2, Theorem 2.7] that cd(b,M/xM) = cd(b,M)− 1. Note that x is part of a b-
Rs.o.p forM , it follows from the definition that cd(b,M/xM) = ara(b,M/xM).
Therefore, by induction,

depth(b,M) = depth(b,M/xM) + 1

= cd(a,M/xM)− cd(a,M/bM) + 1

= cd(a,M)− cd(a,M/bM).

Next, we prove that M is b-RCM, it suffices to prove that cd(b,M) =
cd(a,M)− cd(a,M/bM). If cd(b,M) = 0, then we are done. If cd(b,M) > 0,
then there is x ∈ b that is a part of b-Rs.o.p for M . So we can find elements
y1, . . . , ys ∈ b such that√

⟨x, y1, . . . , ys⟩+AnnRM =
√

b+AnnRM,

that is to say, x, y1, . . . , ys is b-Rs.o.p for M . Hence [2, Theorem 3.3] implies
that x, y1, . . . , ys is M -regular, and so M/xM is a-RCM as x ∈ a is M -regular.
Note that ara(b,M/xM) = cd(b,M/xM), by induction, one has

cd(b,M) = cd(b,M/xM) + 1

= cd(a,M/xM)− cd(a,M/bM) + 1

= cd(a,M)− cd(a,M/bM),

so the proof is complete. □

The following proposition shows that a-relative Cohen-Macaulayness is sta-
ble under localization, which is a relative version of [6, Corollary 2.1.3(b)].

Proposition 2.8. Let a be an ideal of R and M an a-RCM R-module. Then,
for every multiplicatively closed set S of R with S ∩ a = ∅, the localized module
S−1M is an S−1a-RCM S−1R-module. In particular, Mp is an aRp-RCM
Rp-module for p ∈ SuppRM ∩V(a).
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Proof. By [5, Corollary 4.3.3], for every n ∈ Z, one has

S−1(Hn
a (M)) ∼= Hn

S−1a(S
−1M).

which implies that

cd(a,M) = depth(a,M) ≤ depth(S−1a,S−1M)

≤ cd(S−1a, S−1M)

≤ cd(a,M).

Thus depth(S−1a, S−1M) = cd(S−1a, S−1M), as required. □

The following proposition gives a behaviours of a-RCM modules under lo-
calization for a special subset of support.

Proposition 2.9. Let a be an ideal of R and M an a-RCM R-module. Then
for every p ∈ SuppRM with p ⊆ a, Mp is a Cohen-Macaulay Rp-module.

Proof. If {p ∈ SuppRM | p ⊆ a} = ∅, then there is nothing to prove. For
every p ∈ SuppRM with p ⊆ a, we do induction on depthRp

Mp = t. If
t = 0, then p ∈ AssRM , and hence dimRp

Mp = 0 by Theorem 2.5. Next,
assumes that t > 0 and the result has been proved for smaller values of t. Then
p ⊈

⋃
q∈AssRM

q, and there is x ∈ p that is an M -regular element. Note that

x ∈ a, so M/xM is a-RCM. Also p ∈ SuppRM/xM and x
1 ∈ pRp is Mp-regular.

By induction, Mp/(
x
1 )Mp is a Cohen-Macaulay Rp-module. Therefore,

depthRp
Mp = depthRp

Mp/(
x

1
)Mp + 1

= dimRp
Mp/(

x

1
)Mp + 1

= dimRp
Mp,

the proof is complete. □

3. The behaviour of relative Cohen-Macaulayness under flat
extensions

In this section, we study the relative Cohen-Macaulayness under flat exten-
sions. More precisely, we give the next main theorem, which is a generalization
of [6, Theorem 2.1.7].

Theorem 3.1. Let f : R → S be a homomorphism of rings, J(R) and J(S)
the Jacosbson radicals of R and S, respectively. Suppose that M is a finitely
generated R-module, N a finitely generated S-module and N faithfully flat over
R with N ̸= J(R)N . If R/J(R) is semisimple and cd(J(R), R) = ara(J(R), R),
then M ⊗R N is a J(S)-RCM S-module if and only if M is a J(R)-RCM R-
module and N/J(R)N is a J(S)-RCM S-module.

The proof of this theorem is divided into the following lemmas.
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Lemma 3.2. Let f : R → S be a homomorphism of rings, M a finitely gener-
ated R-module, N a finitely generated S-module and N is faithfully flat over R
with N ̸= J(R)N . If R/J(R) is semisimple and y ⊆ J(S) an N/J(R)N -regular
sequence, then y is an (M ⊗R N)-regular sequence and N/yN is faithfully flat
over R.

Proof. First, one show that y ∈ S is an (M⊗RN)-regular sequence. We use in-
duction on the length n of y , and only the case n = 1, y = y needs justification.
Set J = J(R). By Krull’s intersection theorem, one has

⋂∞
i=0 J

i(M⊗RN) = 0.
Suppose that yz = 0 for some z ∈ M ⊗R N . If z ̸= 0, then there exists i
such that z ∈ J i(M ⊗R N)\J i+1(M ⊗R N) and y would be a zerodivisor on
J i(M⊗RN)/J i+1(M⊗RN). For any t ≥ 1, consider the embedding J tM → M ,
which induces a monomorphism J tM ⊗R N → M ⊗R N as N is flat, and its
image is J t(M ⊗R N), the flatness of N yields an isomorphism

J i(M ⊗R N)/J i+1(M ⊗R N) ∼= (J iM/J i+1M)⊗R N.

Since J iM/J i+1M is a finitely generated R/J-module and R/J is semisimple,
it follows that (J iM/J i+1M) ⊗R N is a direct summand of (R/J)n ⊗R N ∼=
(N/JN)n for some n ≥ 1. Since y is regular on N/JN , it must be regular on
J i(M ⊗R N)/J i+1(M ⊗R N).

Next, we prove that N/yN is faithfully flat. Consider the exact sequence of
finitely generated R-modules

0 // M1
// M2

// M3
// 0,

which induces the following exact sequence

0 // M1 ⊗R N // M2 ⊗R N // M3 ⊗R N // 0.

As y is M3 ⊗R N -regular and (M3 ⊗R N)/y(M3 ⊗R N) ∼= M3 ⊗R N/yN , it
follows from [4, Lemma 1.1.4] that the sequence

0 // M1 ⊗R N/yN // M2 ⊗R N/yN // M3 ⊗R N/yN // 0

is exact, which implies that N/yN is flat. For every m ∈ MaxR, since N is
faithfully flat, one has N ⊗R R/m ̸= 0. Also y ∈ J(S), the Nakayama’s lemma
implies that (N ⊗R R/m)/y(N ⊗R R/m) ̸= 0. Thus N/yN is a faithfully flat
R-module. □

The following lemma is a more general version of [6, Theorem 1.2.16].

Lemma 3.3. Let f : R → S be a homomorphism of rings, M a finitely gen-
erated R-module, N a finitely generated S-module and N faithfully flat over R
with N ̸= J(R)N . If R/J(R) is semisimple, then

depth(J(S),M ⊗R N) = depth(J(R),M) + depth(J(S), N/J(R)N).

Proof. Suppose that depth(J(R),M) = m and depth(J(S), N/J(R)N) = n.
We only need to prove that depth(J(S),M⊗RN) = m+n. Let x = x1, . . . , xm

∈ J(R) be a maximalM -regular sequence and y = y1, . . . , yn ∈ J(S) a maximal
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N/J(R)N -regular sequence. It follows from [6, Proposition 1.1.2] that f(x ) =
f(x1), . . . , f(xm) ∈ J(R)S is an (M ⊗R N)-regular sequence. Since J(R)S ⊆
J(S) by [1, Proposition 9.14], it follows from Lemma 3.2 that y is (M̄ ⊗R N)-
regular, where M̄ = M/xM . Since M̄ ⊗RN ∼= (M ⊗RN)/f(x )(M ⊗RN), one
has f(x ),y ∈ J(S) is an (M⊗RN)-regular sequence. Hence depth(J(S),M⊗R

N) ≥ m+ n. Set N̄ = N/yN . Then

N̄/J(R)N̄ ∼= (N/J(R)N)/y(N/J(R)N),

M̄ ⊗R N̄ ∼= (M ⊗R N)/(f(x ),y)(M ⊗R N),

which implies that

Extm+n
S (S/J(S),M ⊗R N) ∼= HomS(S/J(S), M̄ ⊗R N̄)

∼= HomS(S/J(S),HomS(S/J(R)S, M̄ ⊗R N̄))

∼= HomS(S/J(S),HomR(R/J(R), M̄)⊗R N̄),

where the first isomorphism is by [6, Lemma 1.2.4], the second one is by adjoint-
ness and the third one is by the flatness of N̄ . Since HomR(R/J(R), M̄) ̸= 0
by [6, Proposition 1.2.3] and N̄ is faithfully flat by Lemma 3.2, it follows that
HomR(R/J(R), M̄)⊗R N̄ ̸= 0. Note that HomR(R/J(R), M̄) is a finitely gen-
erated R/J(R)-module and R/J(R) is semisimple, so HomR(R/J(R), M̄)⊗RN̄
is a direct summand of (R/J(R))s ⊗R N̄ ∼= (N̄/J(R)N̄)s for some s ≥ 1. By
[6, Proposition 1.2.3], one has HomS(S/J(S), N̄/J(R)N̄) ̸= 0, which implies
that HomS(S/J(S),HomR(R/J(R), M̄)⊗R N̄) ̸= 0. Therefore,

depth(J(S),M ⊗R N) ≤ m+ n,

as desired. □

Lemma 3.4. Let f : R → S be a ring homomorphism. Suppose that

cd(J(R), R) = ara(J(R), R).

Then
cd(J(S), S) = cd(J(R), R) + cd(J(S), S/J(R)S).

Proof. Set cd(J(R), R) = ara(J(R), R) = n. By [2, Lemma 2.2], there exist

x1, . . . , xn ∈ J(R) which is a J(R)-Rs.o.p of R. So
√

⟨x1, . . . , xn⟩ =
√
J(R)

and then
√
⟨x1, . . . , xn⟩S =

√
J(R)S. Hence [2, Lemma 2.4] implies that

cd(J(S), S/J(R)S) = cd(J(S), S/⟨x1, . . . , xn⟩S)
= cd(J(S), S)− n.

We obtain the equality we seek. □

The following lemma is a nice generalization of [6, A.11].

Lemma 3.5. Let f : R → S be a ring homomorphism with cd(J(R), R) =
ara(J(R), R). Suppose that M is a finitely generated R-module, N a finitely
generated S-module and N faithfully flat over R with N ̸= J(R)N . Then

cd(J(S),M ⊗R N) = cd(J(R),M) + cd(J(S), N/J(R)N).
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Proof. Set I = AnnRM and R̄ = R/I. Then M ⊗R N ∼= M ⊗R̄ N/IN replace
R by R̄, S by S/IS and N by N/IN , we may assume that SuppRM = SpecR.
Hence cd(J(R), R) = cd(J(R),M). Next, replacing S by S/AnnSN , we may
assume that SuppSN = SpecS. Since N/J(R)N ∼= S/J(R)S ⊗S N , we have
SuppSS/J(R)S = V(J(R)S) = SuppSN/J(R)N . Thus cd(J(S), S/J(R)S) =
cd(J(S), N/J(R)N). Take q ∈ SpecS and let p = q ∩R. Then

q ∈ SuppS(R/p⊗R N) and so (R/p⊗R N)q ∼= Rp/pRp ⊗Rp
Nq ̸= 0,

which implies that Nq is a faithfully flat Rp-module. Hence (M ⊗R N)q ∼=
Mp ⊗Rp

Nq ̸= 0 and SuppS(M ⊗R N) = SpecS. So by Lemma 2.2, one
has cd(J(S), S) = cd(J(S),M ⊗R N). Hence Lemma 3.4 yields the desired
equality. □

Proof of Theorem 3.1. Since N is faithfully flat over R with N ̸= J(R)N and
R/J(R) is semisimple, it follows from Lemma 3.3 and Lemma 3.5 that

depth(J(S),M ⊗R N) = depth(J(R),M) + depth(J(S), N/J(R)N),

cd(J(S),M ⊗R N) = cd(J(R),M) + cd(J(S), N/J(R)N).

Thus M ⊗R N is a J(S)-RCM S-module if and only if M is a J(R)-RCM
R-module and N/J(R)N is a J(S)-RCM S-module. □

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.6. Let f : (R,m) → (S, n) be a faithfully flat ring homomorphism.
Then S is Cohen-Macaulay over S if and only if R is Cohen-Macaulay over R
and R/mR is Cohen-Macaulay over S.

The next corollary shows that the relative Cohen-Macaulayness is stable
under J(R)-adic completion of R.

Corollary 3.7. Let J(R) = J be the Jacosbson radical of R, M a finitely

generated R-module and M̂J its J-adic completion. If R/J is semisimple and
cd(J,R) = ara(J,R), then

(1) depth(J,M) = depthR̂(Ĵ , M̂
J).

(2) M is J-RCM if and only if M̂J is Ĵ-RCM.

Proof. This follows from depth(Ĵ , R̂J/JR̂J) = 0 and the ring homomorphism

R → R̂J is faithfully flat. □

The relative Cohen-Macaulayness is stable under polynomial rings and for-
mal power series.

Corollary 3.8. Let J(R) = J be the Jacosbson radical of R. If R/J is
semisimple and cd(J,R) = ara(J,R), then

(1) R is J-RCM if and only if R[x1, . . . , xn] is J [x1, . . . , xn]-RCM.
(2) R is J-RCM if and only if R[[x1, . . . , xn]] is J [[x1, . . . , xn]]-RCM.
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Proof. This follows from

depthR[x1,...,xn](J [x1, . . . , xn], R[x1, . . . , xn]/J [x1, . . . , xn]) = 0,

depthR[[x1,...,xn]](J [[x1, . . . , xn]], R[[x1, . . . , xn]]/J [[x1, . . . , xn]]) = 0

and the ring homomorphisms R → R[x1, . . . , xn] and R → R[[x1, . . . , xn]] are
faithfully flat. □
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