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ON RELATIVE COHEN-MACAULAY MODULES

ZHONGKUI L1u, PENGJU MA, AND XIAOYAN YANG

ABSTRACT. Let a be an ideal of a commutative noetherian ring R. We
give some descriptions of the a-depth of a-relative Cohen-Macaulay mod-
ules by cohomological dimensions, and study how relative Cohen-Macaul-
ayness behaves under flat extensions. As applications, the perseverance
of relative Cohen-Macaulayness in a polynomial ring, formal power series
ring and completion are given.

1. Introduction

The theory of Cohen-Macaulay rings and modules is among the most deep
influential parts of commutative algebra, with numerous applications in com-
mutative algebra, algebraic geometry and combinatorics and so on; more de-
tails see [6]. In the words of Hochster, ‘Life is really worth living in a Cohen-
Macaulay ring’ (see [8, p. 887]).

Let (R,m) be a local ring. A finitely generated R-module M is said to be
Cohen-Macaulay if depthp M = dimp M. These notions have been extended to
non-local rings. Let a be a proper ideal of an arbitrary noetherian ring R. A
finitely generated R-module M with M # aM is said to be a-relative Cohen-
Macaulay, a-RCM, if depth(a, M) = cd(a, M). This notion as a ganaralization
of classical Cohen-Macaulay modules was introduced by Zargar and Zakeri in
[10] and its study was continued in [2,7,9,11].

It is well-known that, for a Cohen-Macaulay R-module M over a local ring
(R,m), depthp M = dimR/p for all p € AssgM and the depth with respect to
an arbitrary ideal a C m is given by its codimension, that is, depth(a, M) =
dimgpM — dimpM/aM. The first aim of this paper is to consider the the
following question:
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Question 1. Can we use cd(a, R/p) of an a-RCM module M to calculate
depth(a, M)?

In Section 1, we show that, for an a-RCM module M, depth(a, M) =
cd(a, R/p) for all p € AssgM. As an applications of this equality, we show that,
for two ideals a,b with b C a, if c¢d(b, M) = ara(b, M), then depth(b, M) =
cd(a, M) — cd(a, M/bM).

Bruns and Herzog [6, Theorem 2.1.7] showed that the Cohen-Macaulay prop-
erty is stable under flat local extensions: Let f : (R, m) — (S, n) be a homomor-
phism of local rings. Suppose that M is a finitely generated R-module and N
is an R-flat finitely generated S-module. Then M ®pg N is a Cohen-Macaulay
S-module if and only if M is a Cohen-Macaulay R-module and N/mN is a
Cohen-Macaulay S-module. The second aim of this paper is to consider the
following question:

Question 2. Is there an analogous theorem for the a-relative Cohen-Macaul-
ayness?

In Section 2, we give a positive answer for Question 2 under some conditions
and study the perseverance of relative Cohen-Macaulayness under flat exten-
sions (not necessarily local). It is discovered that relative Cohen-Macaulay
modules with respect to the Jacosbson radical enjoy many interesting proper-
ties which are analogous to those of Cohen-Macaulay modules over local rings.

Unless stated to the contrary we assume throughout this paper that R is
a commutative Noetherian ring which is not necessarily local. Next, we recall
some notions and preliminaries which we will need later.

Regular sequence. Let M be a finitely generated R-module. An element z of
R is a nonzerodivisor on M if xm = 0 implies m = 0; if in addition xM # M,
then x is said to be M-regular. A sequence ¢ = x1,...,x4 of elements in R
is an M -regular sequence if x; is a nonzerodivisor on M/(x1,...,z;—1)M for
1<i<dand zM # M.

Associated prime and support. We write SpecR for the set of prime ideals
of R. For an ideal a of R, set
V(a) := {p € SpecR|a C p}.

Let M be an R-module. A prime ideal p of R is said to be an associated prime
of M if it is the annihilator of an element in M. This is equivalent to M
containing the cyclic submodule R/p. The set of all associated prime ideals of
M is denoted by AssgpM. Fix p € SpecR, let M, denote the localization of M
at p. The support of M is the set

Suppr M := {p € SpecR| M, # 0}.

It is well known that AsspM C Suppp M.
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Dimension. Let a be a proper ideal of R and M a finitely generated R-module.
The dimension of M, denoted by dimgrM, is

dimpM := sup{dimR/p|p € SupppM}.
The height of M with respect to a, denoted by htys(a), is
hty(a) := inf{dimg, M, |p € SupppM NV (a)}.
The n-th local cohomology module of M is defined as
H} (M) := lim Ext};(R/a’, M).

The reader can refer to [5] for more details about local cohomology.

The cohomological dimension of M with respect to a, denoted by cd(a, M),
is

cd(a, M) :=sup{n € Z|H] (M) # 0}.

The cohomological dimension of the zero module is —oco. One easily sees that

cd(a, M) = —oc if and only if M = aM.
The finiteness dimension of M with respect to a, denoted by f,(M), is

fo(M) : = inf{n € Z|H} (M) is not finitely generated}
=inf{n € Z|a € /(0 : H?(M))}.

Note that f,(M) is either a positive integer or oo since HY(M) is finitely gen-
erated.

Depth. Let a be a proper ideal of R and M a finitely generated R-module.
The depth of M with respect to a, denoted by depth(a, M), is

depth(a, M) : = inf{n € Z|Extk(R/a, M) # 0}
= inf{n € Z|H; (M) # 0}.
In particular, if (R, m) is local, the depth(m, M) is denoted by depthp M.
The minimum adjusted depth of M with respect to a, denoted by \q(M), is
Aa(M) := inf{depthp M, + ht(aT_i—p) |p € SpecR\ V(a)}.
It follows from [5, Theorem 9.3.5] that f5(M) < A\ (M).

2. Characterizations of the a-depth of a-RCM modules

In this section, we provide some descriptions of the a-depth of a-relative
Cohen-Macaulay modules by cohomological dimensions.

Definition ([2]). Let a be an ideal of R and M a finitely generated R-module
with M # aM. The module M is said to be a-relative Cohen-Macaulay, a-
RCM, if

depth(a, M) = cd(a, M).
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Let ¢ = cd(a, M). We call a sequence z1,...,z. € a an a-relative system of
parameters, a-Rs.o.p, of M if

\/<x1,...7xc>—|—AnnRM: \/a+AnnRM.

The arithmetic rank of an ideal a of R with respect to a module M, denoted
by ara(a, M), is defined as the infimum of the integers n such that there exist
Z1,...,%, € R satisfying

Ve, xn) + AnmmgM = /a+ Anng M.

Remark 2.1. Let a be a proper ideal of R and M a non-zero finitely generated
R-module.

(1) If M is an a-RCM R-module, then M # aM implies that cd(a, M) #
—00. Thus, depth(a, M) = cd(a, M) > 0.

(2) If (R, m) is a local ring, then the class of m-RCM coincide with the class
of Cohen-Macaulay modules. In fact, one has M is a Cohen-Macaulay module
if and only if depthpM = dimrM if and only if depth(m, M) = cd(m, M) if
and only if M is m-RCM.

(3) Suppose that a is contained in the Jacosbson radical J(R) of R and
T =21,...,T, € aan a-Rs.o.p of M with a = (x). If cd(a, M) = ara(a, M) =
n > 0, then M is a-RCM if and only if M/(x1,...,z;)M isa-RCMfor 1 <i <n
by [2, Lemma 2.4], [2, Theorem 3.3] and [6, Proposition 1.2.10]. In particalar,
if (R, m) is a local ring and a = m, then M is a Cohen-Macaulay R-module if
and only if M/(x1,...,2;)M is a Cohen-Macaulay R-module for any 1 < i < n.

(4) If cd(a, M) = 0, then 0 < depth(a, M) < cd(a, M) = 0. So M is a-RCM.

Lemma 2.2 ([4, Theorem 2.2]). Let a be an ideal of R, M and N two finitely
generated R-modules with SupprN C SupprM. Then

cd(a,N) < cd(a, M).
In particular, if Suppp N = Suppp M, then cd(a, N) = cd(a, M).

Corollary 2.3. Let a be an ideal of R and M a finitely generated R-module.
For any p € Suppr M, one has

cd(a, M/pM) = cd(a, R/p) < cd(a, M).

Proof. Since SupppM/pM = V(p) N SupprM = V(p) C SupppM, it follows
from Lemma 2.2 that cd(a, M/pM) = cd(a, R/p) < cd(a, M), as desired. O

We have the following useful remark.
Remark 2.4 ([3, Remark 3.1]). If M # aM and htp;(a) > 0, then
depth(a, M) < f,(M) < htp(a) < cd(a, M) < ara(a, M) < dimgM.

We now present the first main theorem of this section, which is a more
general version of [6, Theorem 2.1.2(a)].
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Theorem 2.5. Let a be an ideal of R and M an a-RCM R-module with
cd(a, M) = c.
(1) If c =0, then

depth(a, M) = cd(a, R/p) = htps(a) =0 for all p € AssgM N'V(a).
(2) If ¢ > 0, then
depth(a, M) = cd(a, R/p) = htas(a) = fo(M) = X\a(M) = ¢ for all p € AsspM.

Proof. (1) If ¢ = 0, then Hompg(R/a, M) # 0, it follows that Assg M NV (a) # 0.
Let p € AssgMNV(a). Then 0 # M/pM is a-torsion, and hence H: (M /pM) =
0 for ¢ > 0. Thus 0 = cd(a, M/pM) = cd(a, R/p) < cd(a, M) = 0 by Corollary
2.3. Also 0 < htps(a) < cd(a, M) = 0, as required.

(2) If ¢ > 0, then Homg(R/a, M) = 0, and so AssgM NV(a) = 0. Let
p € AsspM. Then depthp M, = 0. One has the following (in)equalities

cd(a, M) = htp(a)
= fa(M)
< Xa(M)
a+p

< depthp M, + ht( )

<ed(" P R/p)
= Cd(a7 R/p)
< cd(a, M),

where the first, the second and the fifth ones are by Remark 2.4, the third one
is by [5, Theorem 9.3.5], the forth one is by the definition, the sixth one is by
the isomorphism Hf,  (R/p) = H{(R/p) for any i > 0, and the seventh one
is by Corollary 2.3. O

According to Theorem 2.5, one can obtain the following classical result about
Cohen-Macaulay modules (see [6, Theorem 2.1.2(a)]).

Corollary 2.6. Let (R,m) be a local ring and M a Cohen-Macaulay R-module.
Then

depthp M = dimR/p for all p € AssgM.

The following is the second main theorem of this section, which is a gener-
alization of [6, Theorem 2.1.2(b)].

Theorem 2.7. Let a,b be two ideals of R withb C a C J(R) and M an a-RCM
R-module. If cd(b, M) = ara(b, M), then M is b-RCM and

depth(b, M) = cd(a, M) — cd(a, M/bM).
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Proof. First, we show that the equality holds. If cd(a, M) = 0, then 0 <
cd(a, M/bM) < cd(a,M) = 0 by Corollary 2.3, the equality holds. Next
suppose that cd(a, M) > 0 and do induction on depth(b, M). If depth(b, M) =
0, then Homp(R/b, M) # 0, and so
0 # AssgHomp(R/b, M) = Assp(M) NV(b) C SuppzM NV (b).
Set p € SupprM NV (b). There exists q € Assg(M) NV (b) such that q C p, it
follows from Theorem 2.5 that
cd(a, M) = cd(a, R/q) = cd(a, M/qM).

Since Suppr M /qM C SuppyM/6M, cd(a, M/qM) < cd(a, M/b6M) by Lemma
2.2. So
cd(a, M) =cd(a,R/q) < cd(a, M/bM) < cd(a, M).

Thus the equality holds. If depth(b, M) > 0, then we can choose z € b that
is M-regular, which implies that M/axM is a-RCM as z € a. It follows from
[2, Theorem 2.7] that cd(b, M /zM) = c¢d(b, M) — 1. Note that x is part of a b-
Rs.o.p for M, it follows from the definition that cd(b, M/xM) = ara(b, M/zM).
Therefore, by induction,

depth(b, M) = depth(b, M/xM) + 1
=cd(a, M/xM) — cd(a, M/bM) + 1
=cd(a, M) —cd(a, M/6M).

Next, we prove that M is b-RCM, it suffices to prove that cd(b, M) =
cd(a, M) — cd(a, M/bM). If cd(b, M) = 0, then we are done. If cd(b, M) > 0,
then there is x € b that is a part of b-Rs.o.p for M. So we can find elements
Y1,-..,Ys € b such that

\/<337?jla v ays> + AHHRM = \/b + AHDRM,

that is to say, x,y1,...,¥ys is b-Rs.o.p for M. Hence [2, Theorem 3.3] implies
that z,y1,...,ys is M-regular, and so M/xM is a-RCM as = € a is M-regular.
Note that ara(b, M/xM) = c¢d(b, M/xM), by induction, one has

(
cd(b, M) = cd(b, M/xM) + 1
=cd(a, M/zM) — cd(a, M/bM) + 1
= cd(a, M) — cd(a, M/bM),

so the proof is complete. O

The following proposition shows that a-relative Cohen-Macaulayness is sta-
ble under localization, which is a relative version of [6, Corollary 2.1.3(b)].

Proposition 2.8. Let a be an ideal of R and M an a-RCM R-module. Then,
for every multiplicatively closed set S of R with SNa =0, the localized module
S™'M is an ST'a-RCM S~'R-module. In particular, M, is an aR,-RCM
R, -module for p € SupppM NV(a).
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Proof. By [5, Corollary 4.3.3], for every n € Z, one has
S (HE(M)) = HE, (S M),
which implies that
cd(a, M) = depth(a, M) < depth(S™'a, S~ M)
d(S~'a, St M)
d(a, M).
Thus depth(S~ta, S M) = cd(S~ta, S~1M), as required. O

<c
<c

The following proposition gives a behaviours of a-RCM modules under lo-
calization for a special subset of support.

Proposition 2.9. Let a be an ideal of R and M an a-RCM R-module. Then
for every p € SupprM with p C a, M, is a Cohen-Macaulay R,-module.

Proof. If {p € SupprM |p C a} = 0, then there is nothing to prove. For
every p € SupppM with p C a, we do induction on depthp M, = t. If
t = 0, then p € AsspM, and hence dimp, M, = 0 by Theorem 2.5. Next,
assumes that ¢ > 0 and the result has been proved for smaller values of t. Then

p ¢ U ¢, and there is z € p that is an M-regular element. Note that
qEAssr M

x € a,s0 M/xM is a-RCM. Also p € Suppr M /oM and { € pR,, is My-regular.
By induction, M,/($)M, is a Cohen-Macaulay R,-module. Therefore,
depthy, M, = depthy, M, /(%)Mp +1
= dimRPMp/( M, +1

= diHlRlg Mp,

xT
1

the proof is complete. (I

3. The behaviour of relative Cohen-Macaulayness under flat
extensions

In this section, we study the relative Cohen-Macaulayness under flat exten-
sions. More precisely, we give the next main theorem, which is a generalization
of [6, Theorem 2.1.7].

Theorem 3.1. Let f : R — S be a homomorphism of rings, J(R) and J(S)
the Jacosbson radicals of R and S, respectively. Suppose that M is a finitely
generated R-module, N a finitely generated S-module and N faithfully flat over
R with N # J(R)N. If R/ J(R) is semisimple and cd(J(R), R) = ara(J(R), R),
then M ®@g N is a J(S)-RCM S-module if and only if M is a J(R)-RCM R-
module and N/J(R)N is a J(S)-RCM S-module.

The proof of this theorem is divided into the following lemmas.
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Lemma 3.2. Let f: R — S be a homomorphism of rings, M a finitely gener-
ated R-module, N a finitely generated S-module and N is faithfully flat over R
with N # J(R)N. If R/ J(R) is semisimple and y C J(S) an N/J(R)N -regular
sequence, then y is an (M ®g N)-regular sequence and N/yN is faithfully flat
over R.

Proof. First, one show that y € S'is an (M ®g N)-regular sequence. We use in-
duction on the length n of y, and only the case n = 1, y = y needs justification.
Set J = J(R). By Krull’s intersection theorem, one has ;- J(M ®r N) = 0.
Suppose that yz = 0 for some z € M ®r N. If z # 0, then there exists 4
such that z € J/(M ®@g N)\J™(M ®g N) and y would be a zerodivisor on
J(M@rN)/JTH(M®@grN). For any t > 1, consider the embedding J'M — M,
which induces a monomorphism J'M ®r N — M ®g N as N is flat, and its
image is J*(M ®p N), the flatness of N yields an isomorphism
J(M ®r N)/JHH (M @p N) = (J'M/JF'M) @ N.

Since J'M/J* 1M is a finitely generated R/J-module and R/.J is semisimple,
it follows that (J'M/J"™ M) ®@g N is a direct summand of (R/J)" @r N =
(N/JN)™ for some n > 1. Since y is regular on N/JN, it must be regular on
J(M ®@r N)/JFH(M ®@r N).

Next, we prove that N/yN is faithfully flat. Consider the exact sequence of
finitely generated R-modules

0 M1 M2 M3 Oa

which induces the following exact sequence

0——= M ®r N —— My Qr N —— M3 Qr N —— 0.
As y is M3 ®pg N-regular and (M3 ®g N)/y(M3 ®r N) &2 M3 ®g N/yN, it
follows from [4, Lemma 1.1.4] that the sequence

0—— M; g N/JyN —— Ms @ N/yN —— M3 ®@p N/yN —— 0

is exact, which implies that N/yN is flat. For every m € MaxR, since N is
faithfully flat, one has N ® g R/m #£ 0. Also y € J(S), the Nakayama’s lemma
implies that (N ®p R/m)/y(N @ R/m) # 0. Thus N/yN is a faithfully flat
R-module. (]

The following lemma is a more general version of [6, Theorem 1.2.16].

Lemma 3.3. Let f: R — S be a homomorphism of rings, M a finitely gen-
erated R-module, N a finitely generated S-module and N faithfully flat over R
with N # J(R)N. If R/J(R) is semisimple, then

depth(J(S), M ®g N) = depth(J(R), M) + depth(J(S), N/J(R)N).

Proof. Suppose that depth(J(R), M) = m and depth(J(S), N/J(R)N) = n.
We only need to prove that depth(J(S), M@grN) =m+n. Let € = x1,..., T
€ J(R) be a maximal M-regular sequence and y = y1, ..., y, € J(S) a maximal
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N/J(R)N-regular sequence. It follows from [6, Proposition 1.1.2] that f(x) =
f(x1),.. f(zm) € J(R)S is an (M ®g N)-regular sequence. Since J(R)S C
J(S) by [1, Proposition 9.14], it follows from Lemma 3.2 that y is (M ®g N)-
regular, where M = M/xzM. Since M @p N =2 (M @ N)/f(z)(M ®r N), one
has f(z),y € J(S5) is an (M ®pg N)-regular sequence. Hence depth(J(S), M ®r
N)>m+n. Set N = N/yN. Then
N/J(R)N = (N/J(R)N)/y(N/J(R)N),
M®rN=(MorN)/(f(z),y)(MerN),
which implies that
Ext$ " (S/J(S), M @ N) = Homg(S/J(S), M @ N)

=~ Homg(S/J(S), Homg(S/J(R)S,M ®@r N))

=~ Homg(S/J(S), Homg(R/J(R), M) @ N),
where the first isomorphism is by [6, Lemma 1.2.4], the second one is by adjoint-
ness and the third one is by the flatness of N. Since Homg(R/J(R), M) # 0
by [6, Proposition 1.2.3] and N is faithfully flat by Lemma 3.2, it follows that
Hompg(R/J(R),M)®gr N # 0. Note that Hompg(R/J(R), M) is a finitely gen-
erated R/J(R)-module and R/J(R) is semisimple, so Homg(R/J(R), M)@r N
is a direct summand of (R/J(R))* ®r N = (N/J(R)N)* for some s > 1. By
[6, Proposition 1.2.3], one has Homg(S/J(S), N/J(R)N) # 0, which implies

that Homg(S/J(S), Homgr(R/J(R), M) ®g N) # 0. Therefore,
depth(J(S), M ®r N) <m + n,
as desired. (]
Lemma 3.4. Let f: R — S be a ring homomorphism. Suppose that
cd(J(R), R) = ara(J(R), R).
Then
cd(J(S),S) = cd(J(R), R) + cd(J(S), S/J(R)S).
Proof. Set cd(J(R),R) = ara(J(R),R) = n. By [2, Lemma 2.2], there exist
z1,...,2, € J(R) which is a J(R)-Rs.o.p of R. So \/{(z1,...,z,) = /J(R)
and then \/(z1,...,2,)S = y/J(R)S. Hence [2, Lemma 2.4] implies that
cd(J(S),S/J(R)S) = cd(J(S), S/(x1,...,2n)S)
= cd(J(S5),S) —n.
We obtain the equality we seek. O

The following lemma is a nice generalization of [6, A.11].

Lemma 3.5. Let f : R — S be a ring homomorphism with cd(J(R),R) =
ara(J(R),R). Suppose that M is a finitely generated R-module, N a finitely
generated S-module and N faithfully flat over R with N # J(R)N. Then

cd(J(S), M @ N) = cd(J(R), M) + cd(J(S), N/J(R)N).
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Proof. Set I = AnngM and R = R/I. Then M @ N = M ®p N/IN replace
Rby R, Sby S/IS and N by N/IN, we may assume that Suppz M = SpecR.
Hence cd(J(R), R) = cd(J(R), M). Next, replacing S by S/AnngN, we may
assume that SuppgN = SpecS. Since N/J(R)N = S/J(R)S ®s N, we have
SuppgS/J(R)S = V(J(R)S) = SuppgN/J(R)N. Thus cd(J(S),S/J(R)S) =
cd(J(S),N/J(R)N). Take q € SpecS and let p = qN R. Then

q € Suppg(R/p ®r N) and so (R/p ®@r N)q = Rp/pRy ®r, Ny # 0,

which implies that Ny is a faithfully flat R,-module. Hence (M ®gr N)q =
M, ®r, Ng # 0 and Suppg(M ®r N) = SpecS. So by Lemma 2.2, one
has cd(J(S),S) = c¢d(J(S),M ®r N). Hence Lemma 3.4 yields the desired
equality. (I

Proof of Theorem 3.1. Since N is faithfully flat over R with N # J(R)N and
R/J(R) is semisimple, it follows from Lemma 3.3 and Lemma 3.5 that

depth(J(S), M ®r N) = depth(J(R), M) + depth(J(S), N/J(R)N),
cd(J(8), M ®r N) = cd(J(R), M) + cd(J(S), N/J(R)N).

Thus M ®gr N is a J(S)-RCM S-module if and only if M is a J(R)-RCM
R-module and N/J(R)N is a J(S)-RCM S-module. O

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.6. Let f : (R,m) — (S,n) be a faithfully flat ring homomorphism.
Then S is Cohen-Macaulay over S if and only if R is Cohen-Macaulay over R
and R/mR is Cohen-Macaulay over S.

The next corollary shows that the relative Cohen-Macaulayness is stable
under J(R)-adic completion of R.

Corollary 3.7. Let J(R) = J be the Jacosbson radical of R, M a finitely
generated R-module and M7 its J-adic completion. If R/J is semisimple and
cd(J, R) = ara(J, R), then

(1) depth(.J, M) = depthy(J, M7).

(2) M is J-RCM if and only if M” is J-RCM.

Proof. This follows from depth(j, R’ /J R’ ) = 0 and the ring homomorphism
R — R’ is faithfully flat. O

The relative Cohen-Macaulayness is stable under polynomial rings and for-
mal power series.

Corollary 3.8. Let J(R) = J be the Jacosbson radical of R. If R/J is
semisimple and cd(J, R) = ara(J, R), then

(1) R is J-RCM if and only if R[x1,...,xy,] is J[z1,...,2,]-RCM.

(2) R is J-RCM if and only if R[[z1,...,x,]] is J[[z1,...,2,]]-RCM.
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Proof. This follows from

depthp,, o (J[@1, @], Rlza, .o zn]/J[2e, . 2n]) = 0,
depthpy, .z (1, @]l Rl[@1, .o @]l /I [z, 20]]) = 0

and the ring homomorphisms R — R[z1,...,z,] and R — R[[x1,...,z,]] are
faithfully flat. O
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