Bull. Korean Math. Soc. **54** (2017), No. 4, pp. 1323–1330 https://doi.org/10.4134/BKMS.b160564 pISSN: 1015-8634 / eISSN: 2234-3016

ON MULTISECANT PLANES OF LOCALLY NON-COHEN-MACAULAY SURFACES

WANSEOK LEE AND EUISUNG PARK

ABSTRACT. For a nondegenerate projective irreducible variety $X \subset \mathbb{P}^r$, it is a natural problem to find an upper bound for the value of

$$\mathbb{I}_{\beta}(X) = \max\{ \operatorname{length}(X \cap L) \mid L = \mathbb{P}^{\beta} \subset \mathbb{P}^{r}, \dim (X \cap L) = 0 \}$$

for each $1 \leq \beta \leq e$. When X is locally Cohen-Macaulay, A. Noma in [10] proves that $\ell_{\beta}(X)$ is at most $d - e + \beta$ where d and e are respectively the degree and the codimension of X. In this paper, we construct some surfaces $S \subset \mathbb{P}^5$ of degree $d \in \{7, \ldots, 12\}$ which satisfies the inequality

$$\ell_2(S) \ge d - 3 + \lfloor \frac{d}{2} \rfloor$$

This shows that Noma's bound is no more valid for locally non-Cohen-Macaulay varieties.

1. Introduction

Throughout this paper, we work over an algebraically closed field \Bbbk of arbitrary characteristic.

Let $X \subset \mathbb{P}^r$ be an *n*-dimensional nondegenerate projective irreducible variety of degree *d* and codimension e = r - n. A linear subspace $L = \mathbb{P}^{\beta} \subset \mathbb{P}^r$ is said to be *k*-secant to X when the integer

$$\operatorname{length}(\mathrm{X} \cap \mathrm{L}) := \dim_{\Bbbk}(\mathcal{O}_{\mathbb{P}^{\mathrm{r}}}/\mathcal{I}_{\mathrm{X}} + \mathcal{I}_{\mathrm{L}})$$

is bigger than or equal to k. For each $1 \leq \beta \leq e$, we define $\ell_{\beta}(X)$ by

 $\ell_{\beta}(X) = \max\{ \operatorname{length}(X \cap L) \mid L = \mathbb{P}^{\beta} \subset \mathbb{P}^{r}, \dim (X \cap L) = 0 \}.$

It is a natural problem in projective algebraic geometry to find upper bounds for the values of $\ell_{\beta}(X)$ in terms of basic invariants of X. To put things in perspective, we would like to provide a historical review about the integers $\ell_1(X), \ldots, \ell_e(X)$.

1.1. The case of $\ell_e(X)$: It is an elementary fact that $\ell_e(X)$ is at least d. Moreover, the equality $\ell_e(X) = d$ occurs if and only if X is locally Cohen-Macaulay. In consequence, if X is not locally Cohen-Macaulay, then there

O2017Korean Mathematical Society

Received July 6, 2016; Revised February 18, 2017; Accepted February 23, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 14C17, 14M20, 14Q10.

Key words and phrases. multisecant space, locally Cohen-Macaulayness, rational surface.

should be an *e*-dimensional subspace L such that dim $(X \cap L) = 0$ and $\ell_e(X) > d$ (cf. Exercise 18.17 in [6]). In [10, Example 1.2], the author constructs such an example explicitly. His example is a locally non-Cohen-Macaulay surface S in \mathbb{P}^4 of degree 4 which admits a 5-secant plane.

1.2. The case of $\ell_1(X)$: We say that X is *m*-regular if

$$H^i(\mathbb{P}^r, \mathcal{I}_X(j)) = 0 \quad \text{for all} \quad j \ge m - i.$$

The regularity of X, denoted by reg(X), is defined to be the least m such that X is m-regular. The interest in this concept stems partly from the fact that if X is m-regular, then it is cut out ideal-theoretically by forms of degree at most m. This algebraic property of the m-regularity has the elementary geometric consequence that

(1.1)
$$\ell_1(X) \le \operatorname{reg}(X)$$

The famous Eisenbud-Goto's Regularity Conjecture addresses that

Eisenbud-Goto's Regularity Conjecture: $reg(X) \le d - e + 1$.

By the inequality (1.1), this conjecture implies the following

Multisecant Line Conjecture: $\ell_1(X) \leq d - e + 1$.

The first conjecture is known to be true for curves by [7] and for smooth complex surfaces by [11] and [9]. The second conjecture is shown by A. Noma in [10] when X is locally Cohen-Macaulay. In the classical paper [7], the authors also classify the boundary case for curves. Namely, $\operatorname{reg}(X) = d - r + 2$ if and only if either $d \leq r+1$ or else X is a smooth rational curve such that $\ell_1(X) = d - r + 2$. This beautiful result has been generalized to several directions. In [1], A. Bertin shows that if X is a smooth variety and $\ell_1(X) \geq d - e + 1$, then X is a rational scroll and $\ell_1(X) = \operatorname{reg}(X) = d - e + 1$.

1.3. The case of $\ell_{\beta}(X)$ for $1 < \beta < e$: A. Bertin's view point leads the mathematicians to study the upper bound on $\ell_{\beta}(X)$ for all $1 < \beta < e$. In [8], S. Kwak proves the inequality

$$\operatorname{length}(X \cap L) \le d - e + \beta$$

when X is smooth and $L = \mathbb{P}^{\beta}$ is a *curvilinear* multi-secant space to X in the sense that $X \cap L$ lies on a smooth curve. Then he classifies all varieties having a k-secant curvilinear subspace of dimension β for the extremal case where $k = d - e + \beta$ and next to the extremal case where $k = d - e + \beta - 1$. In [10], A. Noma proves the following.

Theorem 1.1 (Theorem 1.1 in [10]). Let $X \subset \mathbb{P}^r$ be a nondegenerate projective irreducible variety of degree d and codimension e. If X is locally Cohen-Macaulay, then

(1.2)
$$\ell_{\beta}(X) \le d - e + \beta \quad \text{for all } 1 \le \beta \le e.$$

In summary, by Eisenbud-Goto's regularity conjecture it is strongly believed that $\ell_1(X)$ is at most d - e + 1 for all projective irreducible varieties. On the other hand, $\ell_e(X) = d$ if X is locally Cohen-Macaulay and $\ell_e(X) > d$ otherwise. So, the value of $\ell_e(X)$ is closely related to whether X is locally Cohen-Macaulay or not. These facts lead us naturally to ask the following.

Question. Let $X \subset \mathbb{P}^r$ be a nondegenerate projective irreducible variety of degree d and codimension e, which is not locally Cohen-Macaulay. For each integer $\beta < e$, is the value of $\ell_{\beta}(X)$ bounded by $d - e + \beta$?

Concerning this question, our aim in this short note is to show that the answer is "NO" by constructing an example of a variety $X_d \subset \mathbb{P}^{n+3}$ of dimension n, codimension e = 3 and degree $d \in \{7, 8, 9, 10, 11, 12\}$ such that

$$\ell_2(X) \ge d - 3 + \lfloor \frac{d}{2} \rfloor > d - 1.$$

More precisely, our X_d has a locally non-Cohen-Macaulay point, say P. We find explicitly a plane L which passes through P and satisfies the two conditions

dim
$$(X_d \cap L) = 0$$
 and length $(X_d \cap L) \ge d - 3 + \lfloor \frac{a}{2} \rfloor$.

For details, see Theorem 2.3 and Corollary 2.4.

Acknowledgement. This work was supported by a Research Grant of Pukyong National University (2015).

2. Construction of examples

For each k > 5, let $S_k \subset \mathbb{P}^5$ be a subset parameterized by $S_k := \{ [us^2 : ust : ut^2 : vs^k : vst^{k-1} : vt^k] \mid (s,t), (u,v) \in \mathbb{k}^2 \setminus \{(0,0)\} \}.$

Proposition 2.1. Let S_k be as above. Then

- (1) $S_k \subset \mathbb{P}^5$ is a nondegenerate projective surface of degree k+2. (2) $\operatorname{reg}(S_k) = \ell_1(S_k) = k$.

Proof. (1) Let $\widetilde{S}_k := S(2,k) \subset \mathbb{P}^{k+3}, k \geq 5$, be the standard rational normal surface scroll of degree k + 2 parameterized by

$$S_k := \{ [us^2 : ust : ut^2 : vs^k : vs^{k-1}t : \dots : vst^{k-1} : vt^k] \mid (s,t), (u,v) \in K^2 \setminus \{(0,0)\} \}.$$

Let Λ be the (k-3)-dimensional subspace spanned by the (k-2) coordinate points $P_4, P_5, \ldots, P_{k+1}$ of \mathbb{P}^{k+3} . Then Λ avoids \widetilde{S}_k and S_k is the image of \widetilde{S}_k under the linear projection map

$$\pi_{\Lambda}: \mathbb{P}^{k+3} \setminus \Lambda \to \mathbb{P}^5.$$

Moreover, it maps $S(2) \subset \widetilde{S}_k$ to a plane conic isomorphically, the k-dimensional subspace $\langle S(k) \rangle$ onto a plane \mathbb{P}^2 and the rational normal curve $S(k) \subset \widetilde{S}_k$ birationally onto the plane curve C_k of degree k corresponding to the relation

$$\left(vst^{k-1}\right)^{k} = \left(vs^{k}\right) \times \left(vt^{k}\right)^{k-1}.$$

Therefore the restriction map $f: \widetilde{S_k} \to S_k$ of π_{Λ} to $\widetilde{S_k}$ is finite and birational. In particular, we have

$$\deg(S_k) = \deg(\widetilde{S_k}) = k + 2.$$

(2) By the above description of S_k as the image of a finite birational linear projection of $\widetilde{S_k}$, we know that S_k is a surface of maximal sectional regularity in the sense that its general hyperplane section curve is of maximal regularity. For details, see [2, Theorem 6.3]. Indeed, the plane curve C_k provides infinitely many k-secant lines to S_k . This implies that $\ell_1(S_k) \geq k$. Also it follows by [3, Theorem 1.1] that $\operatorname{reg}(S_k) = k$ and hence $\ell_1(S_k) \leq k$. Therefore we get the desired equalities.

Notation and Remark 2.2. Here we consider the defining ideal and the Betti diagram of S_k . All computations are obtained by means of the Computer Algebra System "SINGULAR" [5].

(1) Let $R = \mathbb{k}[Z_0, Z_1, Z_2, Z_3, Z_4, Z_5]$ be the homogeneous coordinate ring of \mathbb{P}^5 and consider the plane curve C_k of degree k which is defined as the image of the rational normal curve $S(k) \subset \widetilde{S_k}$ under the projection map f. Note that C_k is defined in \mathbb{P}^5 by Z_0, Z_1, Z_2 and

$$G_k := Z_3 Z_5^{k-1} - Z_4^k.$$

Also P := [0:0:0:1:0:0] is the unique singular point of C_k .

(2) Let Y = S(0, 1, 2) be the threefold scroll in \mathbb{P}^5 which is defined as the rank 1 locus of the matrix

$$\left(\begin{array}{ccc} Z_0 & Z_1 & Z_4 \\ Z_1 & Z_2 & Z_5 \end{array}\right)$$

Thus the homogeneous ideal I_Y of Y is

$$I_Y = \langle Z_0 Z_5 - Z_1 Z_4, Z_0 Z_2 - Z_1^2, Z_1 Z_5 - Z_2 Z_4 \rangle$$

Observe that S_k is contained in Y since the matrix

$$\left(\begin{array}{ccc} us^2 & ust & vst^{k-1} \\ ust & ut^2 & vt^k \end{array}\right)$$

of rank 1 for all $(s, t), (u, v) \in \mathbb{k}^2 \setminus \{(0, 0)\}.$

- (3) Consider the plane L defined by Z_0, Z_1, Z_5 . One can easily check that the intersection $S_k \cap L$ consists of exactly the two points P and Q := [0:0:1:0:0:0]. Also, $Y \cap L$ is equal to $\operatorname{Proj}(\Bbbk[Z_2, Z_3, Z_4]/\langle Z_2Z_4\rangle)$, the union of two lines in L.
- (4) For $5 \le k \le 10$, the homogeneous ideal of S_k is as below. For the simplicity, put

$$H_{k,i} := Z_0^i Z_4^{k-2i} - Z_2^i Z_3 Z_5^{k-1-2i} \quad (1 \le i \le \lceil \frac{k}{2} \rceil - 2)$$

and

$$G_k := Z_3 Z_5^{k-1} - Z_4^k.$$

$$\begin{split} I_{S_5} &= \langle G_5, H_{5,1}, Z_0^2 Z_4 - Z_2^2 Z_3 \rangle + I_Y, \\ I_{S_6} &= \langle G_6, H_{6,1}, Z_0^2 Z_4^2 - Z_2^2 Z_3 Z_5, Z_0^2 Z_1 Z_4 - Z_2^3 Z_3, Z_0^3 Z_4 - Z_1 Z_2^2 Z_3 \rangle \\ &\quad + I_Y, \\ I_{S_7} &= \langle G_7, H_{7,1}, H_{7,2}, Z_0^3 Z_4 - Z_2^3 Z_3 \rangle + I_Y, \\ I_{S_8} &= \langle G_8, H_{8,1}, H_{8,2}, Z_0^3 Z_4^2 - Z_2^3 Z_3 Z_5, Z_0^3 Z_1 Z_4 - Z_2^4 Z_3, Z_0^4 Z_4 - Z_1 Z_2^3 Z_3 \rangle \\ &\quad + I_Y, \\ I_{S_9} &= \langle G_9, H_{9,1}, H_{9,2}, H_{9,3}, Z_0^4 Z_4 - Z_2^4 Z_3 \rangle + I_Y \quad \text{and} \\ I_{S_{10}} &= \langle G_{10}, H_{10,1}, H_{10,2}, H_{10,3}, Z_0^4 Z_4^2 - Z_2^4 Z_3 Z_5, Z_0^4 Z_1 Z_4 - Z_2^5 Z_3, Z_0^5 Z_4 \\ &\quad - Z_1 Z_2^4 Z_3 \rangle + I_Y. \end{split}$$

- (5) For $5 \le k \le 10$, we could check that the singular locus of S_k is exactly the set $\{P\}$ by applying "SINGULAR" to these defining equations of S_k . Note that the singular locus and the locally non-Cohen-Macaulay locus of S_k are same by [4, Lemma 4.5]. Consequently, it is shown that P is the unique locally non-Cohen-Macaulay point of S_k . In particular, the depth of the local ring $\mathcal{O}_{S_k,P}$ is equal to 1 while that of $\mathcal{O}_{S_k,Q}$ is equal to 2 for all $Q \in S_k \setminus \{P\}$.
- (6) For $5 \le k \le 10$, the occurring Betti diagrams of S_k are as below.

	i	1	2	3	4		i	1	2	3	4			i	1	2	3	4
	$\beta_{i,1}$	3	2	0	0		$\beta_{i,1}$	3	2	0	0			$\beta_{i,1}$	3	2	0	0
S_5	$\beta_{i,2}$	1	0	0	0	S_6	$\beta_{i,2}$	0	0	0	0	Å	S_7	$\beta_{i,2}$	0	0	0	0
	$\beta_{i,3}$	1	6	5	1		$\beta_{i,3}$	3	6	3	0			$\beta_{i,3}$	1	0	0	0
	$\beta_{i,4}$	1	3	3	1		$\beta_{i,4}$	1	3	3	1			$\beta_{i,4}$	1	6	5	1
·	/						$\beta_{i,5}$	1	3	3	1			$\beta_{i,5}$	1	3	3	1
							,							Big	1	3	3	1

Theorem 2.3. For $5 \le k \le 10$, it holds that

(2.1)
$$\ell_2(S_k) \ge k + \lfloor \frac{k}{2} \rfloor$$

Proof. Consider the intersection $\Gamma_k := S_k \cap L$ which is defined by the homogeneous ideal

$$I_{\Gamma_k} := I_{S_k} + \langle Z_0, Z_1, Z_5 \rangle.$$

Since Γ_k is a finite scheme, there is a k-algebra A_k such that $\Gamma_k \cong \text{Spec}(A_k)$. In particular, it holds that

$$\operatorname{length}(\Gamma_k) = \dim_{\mathbb{K}} A_k.$$

Then

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		i	1	2	3	4				i		1	2	3	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\beta_{i,1}$	3	2	0	0				$\beta_{i,i}$	1	3	2	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta_{i,2}$	0	0	0	0				$\beta_{i,j}$	2	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta_{i,3}$	0	0	0	0				$\beta_{i,i}$	3	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_8	$\beta_{i,4}$	3	3 6		0		S_9		β_{i}	4	1	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta_{i,5}$	1	3	3	1				$\beta_{i,5}$		1	6	5	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta_{i,6}$	1	3	3	1				β_{i}	6	1	3		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\beta_{i,7}$	1	3	3	1				β_i	7	1	3	3	1
										β_i	8	1			1
												_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	į									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					β_i	,1				0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					β_i	,2				0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					β_i	,3	0)	0	0	0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Å	S_{10}	β_i	,4	0)	0	0	0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					β_i	.5	3	3	6	3	0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					β_i	.6	1	L	3	3	1				
$ \begin{vmatrix} \beta_{i,8} \\ \beta_{i,9} \end{vmatrix} \begin{vmatrix} 1 & 3 & 3 & 1 \\ 1 & 3 & 3 & 1 \end{vmatrix} \\ \beta_{i,9} \begin{vmatrix} 1 & 3 & 3 & 1 \\ 3 & 3 & 1 \end{vmatrix} $					β_i	.7			3	3	1				
$\left \begin{array}{c c} \beta_{i,9} \\ \beta_{i,9} \end{array} \right \left \begin{array}{c c} 1 \\ 3 \\ 3 \end{array} \right \left \begin{array}{c c} 3 \\ 1 \end{array} \right $					β_i	.8					1				
					β_i	,9					1				

From now on, we suppose that $5 \le k \le 10$. By using the computational result in Notation and Remark 2.2(4), we have

$$I_{\Gamma_k} := \langle Z_0, Z_1, Z_5, Z_2^{\lfloor \frac{\kappa}{2} \rfloor} Z_3, Z_2 Z_4, Z_4^k \rangle.$$

Observe that Γ_k is contained in the complement of the hyperplane $Z_2 + Z_3$. Obviously this implies that A_k is isomorphic to the dehomogenization of the graded ring R/I_{Γ_k} with respect to the linear form $Z_2 + Z_3$. Thus we have

(2.2)
$$A_k \cong K[\alpha, \beta] / \langle \alpha^{\lfloor \frac{k}{2} \rfloor} (1-\alpha), \alpha\beta, \beta^k \rangle,$$

where $\alpha = \frac{Z_2}{Z_2 + Z_3}$ and $\beta = \frac{Z_4}{Z_2 + Z_3}$. In particular, the set

$$\{1, \alpha, \dots, \alpha^{\lfloor \frac{k}{2} \rfloor}, \beta, \beta^2, \dots, \beta^{k-1}\}$$

is a basis of A_k as a k-vector space. It follows that

(2.3)
$$\dim_{\mathbb{K}} A_k = k + \lfloor \frac{k}{2} \rfloor \quad \text{for } 5 \le k \le 10$$

Thus we get the inequality

$$\ell_2(S_k) \ge \operatorname{length}(\Gamma_k) = \operatorname{dim}_{\mathbb{k}} A_k = k + \lfloor \frac{k}{2} \rfloor,$$

which completes the proof of (2.1).

Corollary 2.4. For each $n \ge 2$ and $7 \le d \le 12$, there exists an n-dimensional projective irreducible variety $X \subset \mathbb{P}^{n+3}$ of degree d and codimension 3 which admits a proper $(d-3+|\frac{d}{2}|)$ -secant plane.

Proof. For $5 \le k \le 10$, let $X \subset \mathbb{P}^{n+3}$ be a cone over S_k . Then the assertion comes immediately from Theorem 2.3.

Our computational result in Theorem 2.3 leads us to pose the following.

Conjecture. For all $k \ge 5$, it holds that

$$|S_k \cap L| = k + \lfloor \frac{k}{2} \rfloor$$
 and hence $\ell_2(S_k) \ge k + \lfloor \frac{k}{2} \rfloor$.

In the proof of Theorem 2.3 we use a specific set of generators of the homogeneous ideal of S_k . Indeed, this conjecture can be checked for more k's by the same play once we can solve the problem to describe the homogeneous ideal of S_k precisely. But this problem seems to be difficult for arbitrary k.

The above conjecture is interesting since it says that the value of $\ell_2(X)$ for locally non-Cohen-Macaulay varieties can be enlargeable arbitrarily comparing with Noma's bound d - c + 2 in Theorem 1.1 for the value of $\ell_2(X)$ for locally Cohen-Macaulay varieties.

References

- M.-A. Bertin, On the regularity of varieties having an extremal secant line, J. Reine Angew. Math. 545 (2002), 167–181.
- [2] M. Brodmann, W. Lee, E. Park, and P. Schenzel, Projective varieties of maximal sectional regularity, J. Pure Appl. Algebra 221 (2017), no. 1, 98–118.
- [3] _____, On surfaces of maximal sectional regularity, Taiwanese J. Math. 21 (2017), no. 3, 549–567.
- [4] M. Brodmann and P. Schenzel, Projective surfaces of degree r + 1 in projective r-space and almost non-singular projections, J. Pure Appl. Algebra 216 (2012), no. 10, 2241– 2255.
- [5] M. Decker, G. M. Greuel, and H. Schönemann, Singular 3-1-2-A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2011.
- [6] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, New York, 1995.
- [7] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506.
- [8] S. Kwak, Smooth projective varieties with extremal or next to extremal curvilinear secant subspaces, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3553–3566.
- R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429.
- [10] A. Noma, Multisecant lines to projective varieties, Projective varieties with unexpected properties, 349–359, Walter de Gruyter GmbH and Co. KG, Berlin, 2005.
- [11] H. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321–332.

WANSEOK LEE DEPARTMENT OF APPLIED MATHEMATICS PUKYONG NATIONAL UNIVERSITY BUSAN 608-737, KOREA *E-mail address*: wslee@pknu.ac.kr

EUISUNG PARK DEPARTMENT OF MATHEMATICS KOREA UNIVERSITY SEOUL 136-701, KOREA *E-mail address*: euisungpark@korea.ac.kr