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ON MULTISECANT PLANES OF LOCALLY

NON-COHEN-MACAULAY SURFACES

Wanseok Lee and Euisung Park

Abstract. For a nondegenerate projective irreducible variety X ⊂ Pr,
it is a natural problem to find an upper bound for the value of

ℓβ(X) = max{length(X ∩ L) | L = Pβ ⊂ Pr
, dim (X ∩ L) = 0}

for each 1 ≤ β ≤ e. When X is locally Cohen-Macaulay, A. Noma in [10]
proves that ℓβ(X) is at most d − e + β where d and e are respectively
the degree and the codimension of X. In this paper, we construct some
surfaces S ⊂ P5 of degree d ∈ {7, . . . , 12} which satisfies the inequality

ℓ2(S) ≥ d− 3 + ⌊d
2
⌋.

This shows that Noma’s bound is no more valid for locally non-Cohen-
Macaulay varieties.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of arbi-
trary characteristic.

LetX ⊂ Pr be an n-dimensional nondegenerate projective irreducible variety
of degree d and codimension e = r − n. A linear subspace L = Pβ ⊂ Pr is said
to be k-secant to X when the integer

length(X ∩ L) := dimk(OPr/IX + IL)

is bigger than or equal to k. For each 1 ≤ β ≤ e, we define ℓβ(X) by

ℓβ(X) = max{length(X ∩ L) | L = Pβ ⊂ Pr, dim (X ∩ L) = 0}.

It is a natural problem in projective algebraic geometry to find upper bounds
for the values of ℓβ(X) in terms of basic invariants of X . To put things in
perspective, we would like to provide a historical review about the integers
ℓ1(X), . . . , ℓe(X).
1.1. The case of ℓe(X): It is an elementary fact that ℓe(X) is at least d.
Moreover, the equality ℓe(X) = d occurs if and only if X is locally Cohen-
Macaulay. In consequence, if X is not locally Cohen-Macaulay, then there
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should be an e-dimensional subspace L such that dim (X∩L) = 0 and ℓe(X) >
d (cf. Exercise 18.17 in [6]). In [10, Example 1.2], the author constructs such
an example explicitly. His example is a locally non-Cohen-Macaulay surface S

in P4 of degree 4 which admits a 5-secant plane.
1.2. The case of ℓ1(X): We say that X is m-regular if

Hi(Pr, IX(j)) = 0 for all j ≥ m− i.

The regularity of X , denoted by reg(X), is defined to be the least m such that
X is m-regular. The interest in this concept stems partly from the fact that if
X is m-regular, then it is cut out ideal-theoretically by forms of degree at most
m. This algebraic property of the m-regularity has the elementary geometric
consequence that

(1.1) ℓ1(X) ≤ reg(X).

The famous Eisenbud-Goto’s Regularity Conjecture addresses that

Eisenbud-Goto’s Regularity Conjecture: reg(X) ≤ d− e+ 1.

By the inequality (1.1), this conjecture implies the following

Multisecant Line Conjecture: ℓ1(X) ≤ d− e+ 1.

The first conjecture is known to be true for curves by [7] and for smooth complex
surfaces by [11] and [9]. The second conjecture is shown by A. Noma in [10]
when X is locally Cohen-Macaulay. In the classical paper [7], the authors also
classify the boundary case for curves. Namely, reg(X) = d− r+2 if and only if
either d ≤ r+1 or else X is a smooth rational curve such that ℓ1(X) = d−r+2.
This beautiful result has been generalized to several directions. In [1], A. Bertin
shows that if X is a smooth variety and ℓ1(X) ≥ d− e+1, then X is a rational
scroll and ℓ1(X) = reg(X) = d− e+ 1.
1.3. The case of ℓβ(X) for 1 < β < e: A. Bertin’s view point leads the
mathematicians to study the upper bound on ℓβ(X) for all 1 < β < e. In [8],
S. Kwak proves the inequality

length(X ∩ L) ≤ d− e+ β

when X is smooth and L = Pβ is a curvilinear multi-secant space to X in
the sense that X ∩ L lies on a smooth curve. Then he classifies all varieties
having a k-secant curvilinear subspace of dimension β for the extremal case
where k = d− e+ β and next to the extremal case where k = d− e+ β− 1. In
[10], A. Noma proves the following.

Theorem 1.1 (Theorem 1.1 in [10]). Let X ⊂ Pr be a nondegenerate projec-

tive irreducible variety of degree d and codimension e. If X is locally Cohen-

Macaulay, then

(1.2) ℓβ(X) ≤ d− e + β for all 1 ≤ β ≤ e.
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In summary, by Eisenbud-Goto’s regularity conjecture it is strongly believed
that ℓ1(X) is at most d − e + 1 for all projective irreducible varieties. On the
other hand, ℓe(X) = d ifX is locally Cohen-Macaulay and ℓe(X) > d otherwise.
So, the value of ℓe(X) is closely related to whetherX is locally Cohen-Macaulay
or not. These facts lead us naturally to ask the following.

Question. Let X ⊂ Pr be a nondegenerate projective irreducible variety of
degree d and codimension e, which is not locally Cohen-Macaulay. For each
integer β < e, is the value of ℓβ(X) bounded by d− e + β?

Concerning this question, our aim in this short note is to show that the answer
is “NO” by constructing an example of a variety Xd ⊂ Pn+3 of dimension n,
codimension e = 3 and degree d ∈ {7, 8, 9, 10, 11, 12} such that

ℓ2(X) ≥ d− 3 + ⌊
d

2
⌋ > d− 1.

More precisely, our Xd has a locally non-Cohen-Macaulay point, say P . We
find explicitly a plane L which passes through P and satisfies the two conditions

dim(Xd ∩ L) = 0 and length(Xd ∩ L) ≥ d− 3 + ⌊
d

2
⌋.

For details, see Theorem 2.3 and Corollary 2.4.

Acknowledgement. This work was supported by a Research Grant of Puky-
ong National University (2015).

2. Construction of examples

For each k ≥ 5, let Sk ⊂ P5 be a subset parameterized by

Sk := {[us2 : ust : ut2 : vsk : vstk−1 : vtk] | (s, t), (u, v) ∈ k2 \ {(0, 0)}}.

Proposition 2.1. Let Sk be as above. Then

(1) Sk ⊂ P5 is a nondegenerate projective surface of degree k + 2.
(2) reg(Sk) = ℓ1(Sk) = k.

Proof. (1) Let ˜Sk := S(2, k) ⊂ Pk+3, k ≥ 5, be the standard rational normal
surface scroll of degree k + 2 parameterized by

˜Sk := {[us2 : ust : ut2 : vsk : vsk−1t : · · · : vstk−1 : vtk] | (s, t), (u, v) ∈ K2 \ {(0, 0)}}.

Let Λ be the (k − 3)-dimensional subspace spanned by the (k − 2) coordinate

points P4, P5, . . . , Pk+1 of Pk+3. Then Λ avoids ˜Sk and Sk is the image of ˜Sk

under the linear projection map

πΛ : Pk+3 \ Λ → P5.

Moreover, it maps S(2) ⊂ ˜Sk to a plane conic isomorphically, the k-dimensional

subspace 〈S(k)〉 onto a plane P2 and the rational normal curve S(k) ⊂ ˜Sk

birationally onto the plane curve Ck of degree k corresponding to the relation
(

vstk−1
)k

=
(

vsk
)

×
(

vtk
)k−1

.
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Therefore the restriction map f : ˜Sk → Sk of πΛ to ˜Sk is finite and birational.
In particular, we have

deg(Sk) = deg(˜Sk) = k + 2.

(2) By the above description of Sk as the image of a finite birational linear

projection of ˜Sk, we know that Sk is a surface of maximal sectional regularity

in the sense that its general hyperplane section curve is of maximal regularity.
For details, see [2, Theorem 6.3]. Indeed, the plane curve Ck provides infinitely
many k-secant lines to Sk. This implies that ℓ1(Sk) ≥ k. Also it follows by
[3, Theorem 1.1] that reg(Sk) = k and hence ℓ1(Sk) ≤ k. Therefore we get the
desired equalities. �

Notation and Remark 2.2. Here we consider the defining ideal and the Betti
diagram of Sk. All computations are obtained by means of the Computer
Algebra System “SINGULAR” [5].

(1) Let R = k[Z0, Z1, Z2, Z3, Z4, Z5] be the homogeneous coordinate ring
of P5 and consider the plane curve Ck of degree k which is defined as

the image of the rational normal curve S(k) ⊂ ˜Sk under the projection
map f . Note that Ck is defined in P5 by Z0, Z1, Z2 and

Gk := Z3Z
k−1
5 − Zk

4 .

Also P := [0 : 0 : 0 : 1 : 0 : 0] is the unique singular point of Ck.
(2) Let Y = S(0, 1, 2) be the threefold scroll in P5 which is defined as the

rank 1 locus of the matrix
(

Z0 Z1 Z4

Z1 Z2 Z5

)

.

Thus the homogeneous ideal IY of Y is

IY = 〈Z0Z5 − Z1Z4, Z0Z2 − Z2
1 , Z1Z5 − Z2Z4〉.

Observe that Sk is contained in Y since the matrix
(

us2 ust vstk−1

ust ut2 vtk

)

of rank 1 for all (s, t), (u, v) ∈ k2 \ {(0, 0)}.
(3) Consider the plane L defined by Z0, Z1, Z5. One can easily check that

the intersection Sk ∩ L consists of exactly the two points P and Q :=
[0 : 0 : 1 : 0 : 0 : 0]. Also, Y ∩L is equal to Proj

(

k[Z2, Z3, Z4]/〈Z2Z4〉
)

,
the union of two lines in L.

(4) For 5 ≤ k ≤ 10, the homogeneous ideal of Sk is as below. For the
simplicity, put

Hk,i := Zi
0Z

k−2i
4 − Zi

2Z3Z
k−1−2i
5 (1 ≤ i ≤ ⌈

k

2
⌉ − 2)

and
Gk := Z3Z

k−1
5 − Zk

4 .
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Then














































































IS5 = 〈G5, H5,1, Z
2
0Z4 − Z2

2Z3〉+ IY ,

IS6 = 〈G6, H6,1, Z
2
0Z

2
4 − Z2

2Z3Z5, Z
2
0Z1Z4 − Z3

2Z3, Z
3
0Z4 − Z1Z

2
2Z3〉

+ IY ,

IS7 = 〈G7, H7,1, H7,2, Z
3
0Z4 − Z3

2Z3〉+ IY ,

IS8 = 〈G8, H8,1, H8,2, Z
3
0Z

2
4 − Z3

2Z3Z5, Z
3
0Z1Z4 − Z4

2Z3, Z
4
0Z4 − Z1Z

3
2Z3〉

+ IY ,

IS9 = 〈G9, H9,1, H9,2, H9,3, Z
4
0Z4 − Z4

2Z3〉+ IY and

IS10 = 〈G10, H10,1, H10,2, H10,3, Z
4
0Z

2
4 − Z4

2Z3Z5, Z
4
0Z1Z4 − Z5

2Z3, Z
5
0Z4

− Z1Z
4
2Z3〉+ IY .

(5) For 5 ≤ k ≤ 10, we could check that the singular locus of Sk is exactly
the set {P} by applying “SINGULAR” to these defining equations of
Sk. Note that the singular locus and the locally non-Cohen-Macaulay
locus of Sk are same by [4, Lemma 4.5]. Consequently, it is shown that
P is the unique locally non-Cohen-Macaulay point of Sk. In particular,
the depth of the local ring OSk,P is equal to 1 while that of OSk,Q is
equal to 2 for all Q ∈ Sk \ {P}.

(6) For 5 ≤ k ≤ 10, the occurring Betti diagrams of Sk are as below.

i 1 2 3 4
βi,1 3 2 0 0

S5 βi,2 1 0 0 0
βi,3 1 6 5 1
βi,4 1 3 3 1

i 1 2 3 4
βi,1 3 2 0 0

S6 βi,2 0 0 0 0
βi,3 3 6 3 0
βi,4 1 3 3 1
βi,5 1 3 3 1

i 1 2 3 4
βi,1 3 2 0 0

S7 βi,2 0 0 0 0
βi,3 1 0 0 0
βi,4 1 6 5 1
βi,5 1 3 3 1
βi,6 1 3 3 1

Theorem 2.3. For 5 ≤ k ≤ 10, it holds that

(2.1) ℓ2(Sk) ≥ k + ⌊
k

2
⌋.

Proof. Consider the intersection Γk := Sk ∩L which is defined by the homoge-
neous ideal

IΓk
:= ISk

+ 〈Z0, Z1, Z5〉.

Since Γk is a finite scheme, there is a k-algebra Ak such that Γk
∼= Spec(Ak).

In particular, it holds that

length(Γk) = dimk Ak.
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i 1 2 3 4
βi,1 3 2 0 0
βi,2 0 0 0 0
βi,3 0 0 0 0

S8 βi,4 3 6 3 0
βi,5 1 3 3 1
βi,6 1 3 3 1
βi,7 1 3 3 1

i 1 2 3 4
βi,1 3 2 0 0
βi,2 0 0 0 0
βi,3 0 0 0 0

S9 βi,4 1 0 0 0
βi,5 1 6 5 1
βi,6 1 3 3 1
βi,7 1 3 3 1
βi,8 1 3 3 1

i 1 2 3 4
βi,1 3 2 0 0
βi,2 0 0 0 0
βi,3 0 0 0 0

S10 βi,4 0 0 0 0
βi,5 3 6 3 0
βi,6 1 3 3 1
βi,7 1 3 3 1
βi,8 1 3 3 1
βi,9 1 3 3 1

From now on, we suppose that 5 ≤ k ≤ 10. By using the computational
result in Notation and Remark 2.2(4), we have

IΓk
:= 〈Z0, Z1, Z5, Z

⌊
k

2 ⌋

2 Z3, Z2Z4, Z
k
4 〉.

Observe that Γk is contained in the complement of the hyperplane Z2 + Z3.
Obviously this implies that Ak is isomorphic to the dehomogenization of the
graded ring R/IΓk

with respect to the linear form Z2 + Z3. Thus we have

(2.2) Ak
∼= K[α, β]/〈α⌊

k

2 ⌋(1− α), αβ, βk〉,

where α = Z2

Z2+Z3
and β = Z4

Z2+Z3
. In particular, the set

{1, α, . . . , α⌊
k

2 ⌋, β, β2, . . . , βk−1}

is a basis of Ak as a k-vector space. It follows that

(2.3) dimkAk = k + ⌊
k

2
⌋ for 5 ≤ k ≤ 10.

Thus we get the inequality

ℓ2(Sk) ≥ length(Γk) = dimkAk = k + ⌊
k

2
⌋,

which completes the proof of (2.1). �
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Corollary 2.4. For each n ≥ 2 and 7 ≤ d ≤ 12, there exists an n-dimensional

projective irreducible variety X ⊂ Pn+3 of degree d and codimension 3 which

admits a proper (d− 3 + ⌊d
2⌋)-secant plane.

Proof. For 5 ≤ k ≤ 10, let X ⊂ Pn+3 be a cone over Sk. Then the assertion
comes immediately from Theorem 2.3. �

Our computational result in Theorem 2.3 leads us to pose the following.

Conjecture. For all k ≥ 5, it holds that

| Sk ∩ L |= k + ⌊
k

2
⌋ and hence ℓ2(Sk) ≥ k + ⌊

k

2
⌋.

In the proof of Theorem 2.3 we use a specific set of generators of the homoge-
neous ideal of Sk. Indeed, this conjecture can be checked for more k’s by the
same play once we can solve the problem to describe the homogeneous ideal of
Sk precisely. But this problem seems to be difficult for arbitrary k.

The above conjecture is interesting since it says that the value of ℓ2(X) for
locally non-Cohen-Macaulay varieties can be enlargeable arbitrarily comparing
with Noma’s bound d− c+ 2 in Theorem 1.1 for the value of ℓ2(X) for locally
Cohen-Macaulay varieties.
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