ON MULTISECANT PLANES OF LOCALLY NON-COHEN-MACAULAY SURFACES

Wanseok Lee and Euisung Park

Abstract. For a nondegenerate projective irreducible variety $X \subset \mathbb{P}^{r}$, it is a natural problem to find an upper bound for the value of

$$
\ell_{\beta}(X)=\max \left\{\operatorname{length}(\mathrm{X} \cap \mathrm{~L}) \mid \mathrm{L}=\mathbb{P}^{\beta} \subset \mathbb{P}^{\mathrm{r}}, \operatorname{dim}(\mathrm{X} \cap \mathrm{~L})=0\right\}
$$

for each $1 \leq \beta \leq e$. When X is locally Cohen-Macaulay, A. Noma in [10] proves that $\ell_{\beta}(X)$ is at most $d-e+\beta$ where d and e are respectively the degree and the codimension of X. In this paper, we construct some surfaces $S \subset \mathbb{P}^{5}$ of degree $d \in\{7, \ldots, 12\}$ which satisfies the inequality

$$
\ell_{2}(S) \geq d-3+\left\lfloor\frac{d}{2}\right\rfloor
$$

This shows that Noma's bound is no more valid for locally non-CohenMacaulay varieties.

1. Introduction

Throughout this paper, we work over an algebraically closed field \mathbb{k} of arbitrary characteristic.

Let $X \subset \mathbb{P}^{r}$ be an n-dimensional nondegenerate projective irreducible variety of degree d and codimension $e=r-n$. A linear subspace $L=\mathbb{P}^{\beta} \subset \mathbb{P}^{r}$ is said to be k-secant to X when the integer

$$
\operatorname{length}(\mathrm{X} \cap \mathrm{~L}):=\operatorname{dim}_{\mathbb{k}}\left(\mathcal{O}_{\mathbb{P}^{\mathbf{r}}} / \mathcal{I}_{\mathrm{X}}+\mathcal{I}_{\mathrm{L}}\right)
$$

is bigger than or equal to k. For each $1 \leq \beta \leq e$, we define $\ell_{\beta}(X)$ by

$$
\ell_{\beta}(X)=\max \left\{\operatorname{length}(\mathrm{X} \cap \mathrm{~L}) \mid \mathrm{L}=\mathbb{P}^{\beta} \subset \mathbb{P}^{\mathrm{r}}, \operatorname{dim}(\mathrm{X} \cap \mathrm{~L})=0\right\}
$$

It is a natural problem in projective algebraic geometry to find upper bounds for the values of $\ell_{\beta}(X)$ in terms of basic invariants of X. To put things in perspective, we would like to provide a historical review about the integers $\ell_{1}(X), \ldots, \ell_{e}(X)$.
1.1. The case of $\ell_{\boldsymbol{e}}(\boldsymbol{X})$: It is an elementary fact that $\ell_{e}(X)$ is at least d. Moreover, the equality $\ell_{e}(X)=d$ occurs if and only if X is locally CohenMacaulay. In consequence, if X is not locally Cohen-Macaulay, then there

[^0]should be an e-dimensional subspace L such that $\operatorname{dim}(X \cap L)=0$ and $\ell_{e}(X)>$ d (cf. Exercise 18.17 in [6]). In [10, Example 1.2], the author constructs such an example explicitly. His example is a locally non-Cohen-Macaulay surface S in \mathbb{P}^{4} of degree 4 which admits a 5 -secant plane.
1.2. The case of $\ell_{1}(\boldsymbol{X})$: We say that X is m-regular if
$$
H^{i}\left(\mathbb{P}^{r}, \mathcal{I}_{X}(j)\right)=0 \quad \text { for all } \quad j \geq m-i
$$

The regularity of X, denoted by $\operatorname{reg}(X)$, is defined to be the least m such that X is m-regular. The interest in this concept stems partly from the fact that if X is m-regular, then it is cut out ideal-theoretically by forms of degree at most m. This algebraic property of the m-regularity has the elementary geometric consequence that

$$
\begin{equation*}
\ell_{1}(X) \leq \operatorname{reg}(X) \tag{1.1}
\end{equation*}
$$

The famous Eisenbud-Goto's Regularity Conjecture addresses that
Eisenbud-Goto's Regularity Conjecture: $\operatorname{reg}(X) \leq d-e+1$.
By the inequality (1.1), this conjecture implies the following

$$
\text { Multisecant Line Conjecture: } \ell_{1}(X) \leq d-e+1
$$

The first conjecture is known to be true for curves by [7] and for smooth complex surfaces by [11] and [9]. The second conjecture is shown by A. Noma in [10] when X is locally Cohen-Macaulay. In the classical paper [7], the authors also classify the boundary case for curves. Namely, $\operatorname{reg}(X)=d-r+2$ if and only if either $d \leq r+1$ or else X is a smooth rational curve such that $\ell_{1}(X)=d-r+2$. This beautiful result has been generalized to several directions. In [1], A. Bertin shows that if X is a smooth variety and $\ell_{1}(X) \geq d-e+1$, then X is a rational scroll and $\ell_{1}(X)=\operatorname{reg}(X)=d-e+1$.
1.3. The case of $\ell_{\boldsymbol{\beta}}(\boldsymbol{X})$ for $1<\boldsymbol{\beta}<\boldsymbol{e}$: A. Bertin's view point leads the mathematicians to study the upper bound on $\ell_{\beta}(X)$ for all $1<\beta<e$. In [8], S. Kwak proves the inequality

$$
\operatorname{length}(X \cap L) \leq d-e+\beta
$$

when X is smooth and $L=\mathbb{P}^{\beta}$ is a curvilinear multi-secant space to X in the sense that $X \cap L$ lies on a smooth curve. Then he classifies all varieties having a k-secant curvilinear subspace of dimension β for the extremal case where $k=d-e+\beta$ and next to the extremal case where $k=d-e+\beta-1$. In [10], A. Noma proves the following.

Theorem 1.1 (Theorem 1.1 in [10]). Let $X \subset \mathbb{P}^{r}$ be a nondegenerate projective irreducible variety of degree d and codimension e. If X is locally CohenMacaulay, then

$$
\begin{equation*}
\ell_{\beta}(X) \leq d-e+\beta \quad \text { for all } 1 \leq \beta \leq e \tag{1.2}
\end{equation*}
$$

In summary, by Eisenbud-Goto's regularity conjecture it is strongly believed that $\ell_{1}(X)$ is at most $d-e+1$ for all projective irreducible varieties. On the other hand, $\ell_{e}(X)=d$ if X is locally Cohen-Macaulay and $\ell_{e}(X)>d$ otherwise. So, the value of $\ell_{e}(X)$ is closely related to whether X is locally Cohen-Macaulay or not. These facts lead us naturally to ask the following.

Question. Let $X \subset \mathbb{P}^{r}$ be a nondegenerate projective irreducible variety of degree d and codimension e, which is not locally Cohen-Macaulay. For each integer $\beta<e$, is the value of $\ell_{\beta}(X)$ bounded by $d-e+\beta$?
Concerning this question, our aim in this short note is to show that the answer is "NO" by constructing an example of a variety $X_{d} \subset \mathbb{P}^{n+3}$ of dimension n, codimension $e=3$ and degree $d \in\{7,8,9,10,11,12\}$ such that

$$
\ell_{2}(X) \geq d-3+\left\lfloor\frac{d}{2}\right\rfloor>d-1
$$

More precisely, our X_{d} has a locally non-Cohen-Macaulay point, say P. We find explicitly a plane L which passes through P and satisfies the two conditions

$$
\operatorname{dim}\left(X_{d} \cap L\right)=0 \quad \text { and } \quad \text { length }\left(X_{d} \cap L\right) \geq d-3+\left\lfloor\frac{d}{2}\right\rfloor
$$

For details, see Theorem 2.3 and Corollary 2.4.
Acknowledgement. This work was supported by a Research Grant of Pukyong National University (2015).

2. Construction of examples

For each $k \geq 5$, let $S_{k} \subset \mathbb{P}^{5}$ be a subset parameterized by

$$
S_{k}:=\left\{\left[u s^{2}: u s t: u t^{2}: v s^{k}: v s t^{k-1}: v t^{k}\right] \mid(s, t),(u, v) \in \mathbb{k}^{2} \backslash\{(0,0)\}\right\} .
$$

Proposition 2.1. Let S_{k} be as above. Then
(1) $S_{k} \subset \mathbb{P}^{5}$ is a nondegenerate projective surface of degree $k+2$.
(2) $\operatorname{reg}\left(S_{k}\right)=\ell_{1}\left(S_{k}\right)=k$.

Proof. (1) Let $\widetilde{S_{k}}:=S(2, k) \subset \mathbb{P}^{k+3}, k \geq 5$, be the standard rational normal surface scroll of degree $k+2$ parameterized by
$\widetilde{S_{k}}:=\left\{\left[u s^{2}: u s t: u t^{2}: v s^{k}: v s^{k-1} t: \cdots: v s t^{k-1}: v t^{k}\right] \mid(s, t),(u, v) \in K^{2} \backslash\{(0,0)\}\right\}$.
Let Λ be the $(k-3)$-dimensional subspace spanned by the $(k-2)$ coordinate points $P_{4}, P_{5}, \ldots, P_{k+1}$ of \mathbb{P}^{k+3}. Then Λ avoids $\widetilde{S_{k}}$ and S_{k} is the image of $\widetilde{S_{k}}$ under the linear projection map

$$
\pi_{\Lambda}: \mathbb{P}^{k+3} \backslash \Lambda \rightarrow \mathbb{P}^{5}
$$

Moreover, it maps $S(2) \subset \widetilde{S_{k}}$ to a plane conic isomorphically, the k-dimensional subspace $\langle S(k)\rangle$ onto a plane \mathbb{P}^{2} and the rational normal curve $S(k) \subset \widetilde{S_{k}}$ birationally onto the plane curve C_{k} of degree k corresponding to the relation

$$
\left(v s t^{k-1}\right)^{k}=\left(v s^{k}\right) \times\left(v t^{k}\right)^{k-1}
$$

Therefore the restriction map $f: \widetilde{S_{k}} \rightarrow S_{k}$ of π_{Λ} to $\widetilde{S_{k}}$ is finite and birational. In particular, we have

$$
\operatorname{deg}\left(S_{k}\right)=\operatorname{deg}\left(\widetilde{S_{k}}\right)=k+2
$$

(2) By the above description of S_{k} as the image of a finite birational linear projection of $\widetilde{S_{k}}$, we know that S_{k} is a surface of maximal sectional regularity in the sense that its general hyperplane section curve is of maximal regularity. For details, see [2, Theorem 6.3]. Indeed, the plane curve C_{k} provides infinitely many k-secant lines to S_{k}. This implies that $\ell_{1}\left(S_{k}\right) \geq k$. Also it follows by [3, Theorem 1.1] that $\operatorname{reg}\left(S_{k}\right)=k$ and hence $\ell_{1}\left(S_{k}\right) \leq k$. Therefore we get the desired equalities.

Notation and Remark 2.2. Here we consider the defining ideal and the Betti diagram of S_{k}. All computations are obtained by means of the Computer Algebra System "SINGULAR" [5].
(1) Let $R=\mathbb{k}\left[Z_{0}, Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{5} and consider the plane curve C_{k} of degree k which is defined as the image of the rational normal curve $S(k) \subset \widetilde{S_{k}}$ under the projection $\operatorname{map} f$. Note that C_{k} is defined in \mathbb{P}^{5} by Z_{0}, Z_{1}, Z_{2} and

$$
G_{k}:=Z_{3} Z_{5}^{k-1}-Z_{4}^{k} .
$$

Also $P:=[0: 0: 0: 1: 0: 0]$ is the unique singular point of C_{k}.
(2) Let $Y=S(0,1,2)$ be the threefold scroll in \mathbb{P}^{5} which is defined as the rank 1 locus of the matrix

$$
\left(\begin{array}{lll}
Z_{0} & Z_{1} & Z_{4} \\
Z_{1} & Z_{2} & Z_{5}
\end{array}\right)
$$

Thus the homogeneous ideal I_{Y} of Y is

$$
I_{Y}=\left\langle Z_{0} Z_{5}-Z_{1} Z_{4}, Z_{0} Z_{2}-Z_{1}^{2}, Z_{1} Z_{5}-Z_{2} Z_{4}\right\rangle
$$

Observe that S_{k} is contained in Y since the matrix

$$
\left(\begin{array}{rrr}
u s^{2} & u s t & v s t^{k-1} \\
u s t & u t^{2} & v t^{k}
\end{array}\right)
$$

of rank 1 for all $(s, t),(u, v) \in \mathbb{k}^{2} \backslash\{(0,0)\}$.
(3) Consider the plane L defined by Z_{0}, Z_{1}, Z_{5}. One can easily check that the intersection $S_{k} \cap L$ consists of exactly the two points P and $Q:=$ $[0: 0: 1: 0: 0: 0]$. Also, $Y \cap L$ is equal to $\operatorname{Proj}\left(\mathbb{k}\left[Z_{2}, Z_{3}, Z_{4}\right] /\left\langle Z_{2} Z_{4}\right\rangle\right)$, the union of two lines in L.
(4) For $5 \leq k \leq 10$, the homogeneous ideal of S_{k} is as below. For the simplicity, put

$$
H_{k, i}:=Z_{0}^{i} Z_{4}^{k-2 i}-Z_{2}^{i} Z_{3} Z_{5}^{k-1-2 i} \quad\left(1 \leq i \leq\left\lceil\frac{k}{2}\right\rceil-2\right)
$$

and

$$
G_{k}:=Z_{3} Z_{5}^{k-1}-Z_{4}^{k} .
$$

Then

$$
\left\{\begin{aligned}
I_{S_{5}}= & \left\langle G_{5}, H_{5,1}, Z_{0}^{2} Z_{4}-Z_{2}^{2} Z_{3}\right\rangle+I_{Y} \\
I_{S_{6}}= & \left\langle G_{6}, H_{6,1}, Z_{0}^{2} Z_{4}^{2}-Z_{2}^{2} Z_{3} Z_{5}, Z_{0}^{2} Z_{1} Z_{4}-Z_{2}^{3} Z_{3}, Z_{0}^{3} Z_{4}-Z_{1} Z_{2}^{2} Z_{3}\right\rangle \\
& +I_{Y}, \\
I_{S_{7}}= & \left\langle G_{7}, H_{7,1}, H_{7,2}, Z_{0}^{3} Z_{4}-Z_{2}^{3} Z_{3}\right\rangle+I_{Y} \\
I_{S_{8}}= & \left\langle G_{8}, H_{8,1}, H_{8,2}, Z_{0}^{3} Z_{4}^{2}-Z_{2}^{3} Z_{3} Z_{5}, Z_{0}^{3} Z_{1} Z_{4}-Z_{2}^{4} Z_{3}, Z_{0}^{4} Z_{4}-Z_{1} Z_{2}^{3} Z_{3}\right\rangle \\
& +I_{Y} \\
I_{S_{9}}= & \left\langle G_{9}, H_{9,1}, H_{9,2}, H_{9,3}, Z_{0}^{4} Z_{4}-Z_{2}^{4} Z_{3}\right\rangle+I_{Y} \quad \text { and } \\
I_{S_{10}}= & \left\langle G_{10}, H_{10,1}, H_{10,2}, H_{10,3}, Z_{0}^{4} Z_{4}^{2}-Z_{2}^{4} Z_{3} Z_{5}, Z_{0}^{4} Z_{1} Z_{4}-Z_{2}^{5} Z_{3}, Z_{0}^{5} Z_{4}\right. \\
& \left.-Z_{1} Z_{2}^{4} Z_{3}\right\rangle+I_{Y}
\end{aligned}\right.
$$

(5) For $5 \leq k \leq 10$, we could check that the singular locus of S_{k} is exactly the set $\{P\}$ by applying "SINGULAR" to these defining equations of S_{k}. Note that the singular locus and the locally non-Cohen-Macaulay locus of S_{k} are same by [4, Lemma 4.5]. Consequently, it is shown that P is the unique locally non-Cohen-Macaulay point of S_{k}. In particular, the depth of the local ring $\mathcal{O}_{S_{k}, P}$ is equal to 1 while that of $\mathcal{O}_{S_{k}, Q}$ is equal to 2 for all $Q \in S_{k} \backslash\{P\}$.
(6) For $5 \leq k \leq 10$, the occurring Betti diagrams of S_{k} are as below.

	i	1	2	3	4		i	1	2	3	4		i	1	2	3	4
S_{5}	$\beta_{i, 1}$	3	2	0	0	S_{6}	$\beta_{i, 1}$	3	2	0	0	S_{7}	$\beta_{i, 1}$	3	2	0	0
	$\beta_{i, 2}$	1	0	0	0		$\beta_{i, 2}$	0	0	0	0		$\beta_{i, 2}$	0	0	0	0
	$\beta_{i, 3}$	1	6	5	1		$\beta_{i, 3}$	3	6	3	0		$\beta_{i, 3}$	1	0	0	0
	$\beta_{i, 4}$				1		$\beta_{i, 4}$	1	3	3	1		$\beta_{i, 4}$	1	6	5	1
							$\beta_{i, 5}$	1	3	3	1		$\beta_{i, 5}$	1	3	3	1
													$\beta_{i, 6}$	1	3	3	1

Theorem 2.3. For $5 \leq k \leq 10$, it holds that

$$
\begin{equation*}
\ell_{2}\left(S_{k}\right) \geq k+\left\lfloor\frac{k}{2}\right\rfloor . \tag{2.1}
\end{equation*}
$$

Proof. Consider the intersection $\Gamma_{k}:=S_{k} \cap L$ which is defined by the homogeneous ideal

$$
I_{\Gamma_{k}}:=I_{S_{k}}+\left\langle Z_{0}, Z_{1}, Z_{5}\right\rangle
$$

Since Γ_{k} is a finite scheme, there is a \mathbb{k}-algebra A_{k} such that $\Gamma_{k} \cong \operatorname{Spec}\left(A_{k}\right)$. In particular, it holds that

$$
\operatorname{length}\left(\Gamma_{k}\right)=\operatorname{dim}_{\mathbb{k}} A_{k} .
$$

	i	1	2	3	4		\imath	1	2	3	4
S_{8}	$\beta_{i, 1}$	3	2	0	0	S_{9}	$\beta_{i, 1}$	3	2	0	0
	$\beta_{i, 2}$	0	0	0	0		$\beta_{i, 2}$	0	0	0	0
	$\beta_{i, 3}$	0	0	0	0		$\beta_{i, 3}$	0	0	0	0
	$\beta_{i, 4}$	3	6	3	0		$\beta_{i, 4}$	1	0	0	0
	$\beta_{i, 5}$	1	3	3	1		$\beta_{i, 5}$	1	6	5	1
	$\beta_{i, 6}$	1	3	3	1		$\beta_{i, 6}$	1	3	3	1
	$\beta_{i, 7}$	1	3	3	1		$\beta_{i, 7}$	1	3	3	1
							$\beta_{i, 8}$	1	3	3	1

	i	1	2	3	4
S_{10}	$\beta_{i, 1}$	3	2	0	0
	$\beta_{i, 2}$	0	0	0	0
	$\beta_{i, 3}$	0	0	0	0
	$\beta_{i, 4}$	0	0	0	0
	$\beta_{i, 5}$	3	6	3	0
	$\beta_{i, 6}$	1	3	3	1
	$\beta_{i, 7}$	1	3	3	1
	$\beta_{i, 8}$	1	3	3	1
	$\beta_{i, 9}$	1	3	3	1

From now on, we suppose that $5 \leq k \leq 10$. By using the computational result in Notation and Remark 2.2(4), we have

$$
I_{\Gamma_{k}}:=\left\langle Z_{0}, Z_{1}, Z_{5}, Z_{2}^{\left\lfloor\frac{k}{2}\right\rfloor} Z_{3}, Z_{2} Z_{4}, Z_{4}^{k}\right\rangle
$$

Observe that Γ_{k} is contained in the complement of the hyperplane $Z_{2}+Z_{3}$. Obviously this implies that A_{k} is isomorphic to the dehomogenization of the graded ring $R / I_{\Gamma_{k}}$ with respect to the linear form $Z_{2}+Z_{3}$. Thus we have

$$
\begin{equation*}
A_{k} \cong K[\alpha, \beta] /\left\langle\alpha^{\left\lfloor\frac{k}{2}\right\rfloor}(1-\alpha), \alpha \beta, \beta^{k}\right\rangle, \tag{2.2}
\end{equation*}
$$

where $\alpha=\frac{Z_{2}}{Z_{2}+Z_{3}}$ and $\beta=\frac{Z_{4}}{Z_{2}+Z_{3}}$. In particular, the set

$$
\left\{1, \alpha, \ldots, \alpha^{\left\lfloor\frac{k}{2}\right\rfloor}, \beta, \beta^{2}, \ldots, \beta^{k-1}\right\}
$$

is a basis of A_{k} as a \mathbb{k}-vector space. It follows that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{k}} A_{k}=k+\left\lfloor\frac{k}{2}\right\rfloor \quad \text { for } 5 \leq k \leq 10 \tag{2.3}
\end{equation*}
$$

Thus we get the inequality

$$
\ell_{2}\left(S_{k}\right) \geq \operatorname{length}\left(\Gamma_{k}\right)=\operatorname{dim}_{\mathbb{k}} A_{k}=k+\left\lfloor\frac{k}{2}\right\rfloor,
$$

which completes the proof of (2.1).

Corollary 2.4. For each $n \geq 2$ and $7 \leq d \leq 12$, there exists an n-dimensional projective irreducible variety $X \subset \mathbb{P}^{n+3}$ of degree d and codimension 3 which admits a proper $\left(d-3+\left\lfloor\frac{d}{2}\right\rfloor\right)$-secant plane.

Proof. For $5 \leq k \leq 10$, let $X \subset \mathbb{P}^{n+3}$ be a cone over S_{k}. Then the assertion comes immediately from Theorem 2.3.

Our computational result in Theorem 2.3 leads us to pose the following.
Conjecture. For all $k \geq 5$, it holds that

$$
\left|S_{k} \cap L\right|=k+\left\lfloor\frac{k}{2}\right\rfloor \quad \text { and hence } \quad \ell_{2}\left(S_{k}\right) \geq k+\left\lfloor\frac{k}{2}\right\rfloor .
$$

In the proof of Theorem 2.3 we use a specific set of generators of the homogeneous ideal of S_{k}. Indeed, this conjecture can be checked for more k 's by the same play once we can solve the problem to describe the homogeneous ideal of S_{k} precisely. But this problem seems to be difficult for arbitrary k.

The above conjecture is interesting since it says that the value of $\ell_{2}(X)$ for locally non-Cohen-Macaulay varieties can be enlargeable arbitrarily comparing with Noma's bound $d-c+2$ in Theorem 1.1 for the value of $\ell_{2}(X)$ for locally Cohen-Macaulay varieties.

References

[1] M.-A. Bertin, On the regularity of varieties having an extremal secant line, J. Reine Angew. Math. 545 (2002), 167-181.
[2] M. Brodmann, W. Lee, E. Park, and P. Schenzel, Projective varieties of maximal sectional regularity, J. Pure Appl. Algebra 221 (2017), no. 1, 98-118.
[3] , On surfaces of maximal sectional regularity, Taiwanese J. Math. 21 (2017), no. 3, 549-567.
[4] M. Brodmann and P. Schenzel, Projective surfaces of degree $r+1$ in projective r-space and almost non-singular projections, J. Pure Appl. Algebra 216 (2012), no. 10, 22412255.
[5] M. Decker, G. M. Greuel, and H. Schönemann, Singular 3-1-2-A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2011.
[6] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, New York, 1995.
[7] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491-506.
[8] S. Kwak, Smooth projective varieties with extremal or next to extremal curvilinear secant subspaces, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3553-3566.
[9] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423-429.
[10] A. Noma, Multisecant lines to projective varieties, Projective varieties with unexpected properties, 349-359, Walter de Gruyter GmbH and Co. KG, Berlin, 2005.
[11] H. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321-332.

Wanseok Lee
Department of Applied Mathematics
Pukyong National University
Busan 608-737, Korea
E-mail address: wslee@pknu.ac.kr
Euisung Park
Department of Mathematics
Korea University
Seoul 136-701, Korea
E-mail address: euisungpark@korea.ac.kr

[^0]: Received July 6, 2016; Revised February 18, 2017; Accepted February 23, 2017.
 2010 Mathematics Subject Classification. Primary 14C17, 14M20, 14Q10.
 Key words and phrases. multisecant space, locally Cohen-Macaulayness, rational surface.

