• Title/Summary/Keyword: Coding Sequence

Search Result 861, Processing Time 0.025 seconds

Identification of a New 5'-Noncoding Exon Region and Promoter Activity in Human N-Acetylglucosaminyltransferase III Gene

  • Kang, Bong-Seok;Kim, Yeon-Jeong;Shim, Jae-Kyoung;Song, Eun-Young;Park, Young-Guk;Lee, Young-Choon;Nam, Kyung-Soo;Kim, June-Ki;Lee, Tae-Kyun;Chung, Tae-Wha;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.578-584
    • /
    • 1998
  • In a previous paper (Kim et al., 1996a), the immediate 5' -flanking region and coding region of the human UDP-N -acetylglucosamine:-D-mannoside-1,4-Nacetylglucosaminyltransferase III (N-acetylglucosaminyitransferase- III; GnT-III) gene was reported, isolated and analyzed. Herein, we report on amplification of a new 5' -noncoding region of the GnT-III mRNA by single-strand ligation to single-stranded cDNA-PCR (5' -RACE PCR) using poly(A)+ RNA isolated from human fetal liver cells. A cDNA clone was obtained with 5' sequences (96 bp) that diverged seven nucleotides upstream from the ATG (+1) start codon. A concensus splice junction sequence, TCTCCCGCAG, was found immediately 5' to the position where the sequences of the cDNA diverged. The result suggested the presence of an intron in the 5' -noncoding region and that the cDNA was an incompletely reversetranscribed cDNA product derived from an mRNA containing a new noncoding exon. When mRNA expression of GnT-III in various human tissues and cancer cell lines was examined, Northern blot analysis indicated high expression levels of GnT-III in human fetal kidney and brain tissues, as well as for a number of leukemia and lymphoma cancer cell lines. Promoter activities of the 5' -flanking regions of exon 1 and the new noncoding region were measured in a human hepatoma cell line, HepG2, by luciferase assays. The 5'-flanking region of exon 1 was the most active, whilst that of exon 2 was inactive.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Association of a c.1084A>G (p.Thr362Ala)Variant in the DCTN4 Gene with Wilson Disease

  • Lee, Robin Dong-Woo;Kim, Jae-Jung;Kim, Joo-Hyun;Lee, Jong-Keuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • Purpose: Wilson disease is an autosomal recessive disorder which causes excessive copper accumulation in the hepatic region. So far, ATP7B gene is the only disease-causing gene of Wilson disease known to date. However, ATP7B mutations have not been found in ~15% of the patients. This study was performed to identify any causative gene in Wilson disease patients without an ATP7B mutation in either allele. Materials and Methods: The sequence of the coding regions and exon-intron boundaries of the five ATP7B-interacting genes, ATOX1, COMMD1, GLRX, DCTN4, and ZBTB16, were analyzed in the 12 patients with Wilson disease. Results: Three nonsynonymous variants including c.1084A>G (p.Thr362Ala) in the exon 12 of the DCTN4 gene were identified in the patients examined. Among these, only p.Thr362Ala was predicted as possibly damaging protein function by in silico analysis. Examination of allele frequency of c.1084A>G (p.Thr362Ala) variant in the 176 patients with Wilson disease and in the 414 normal subjects revealed that the variant was more prevalent in the Wilson disease patients (odds ratio [OR]=3.14, 95% confidence interval=1.36-7.22, P=0.0094). Conclusion: Our result suggests that c.1084A>G (p.Thr362Ala) in the ATP7B-interacting DCTN4 gene may be associated with the pathogenesis of Wilson disease.

Association of Bovine CSRP3 and ACOX1 Genes with Carcass and Meat Quality Traits (소의 도체, 육질형질과 CSRP3, ACOX1 유전자들과의 상관관계)

  • Lee, Jong-Kwan;Cho, Yong-Min;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.231-238
    • /
    • 2010
  • There is no investigation has yet been conducted for ACOX1 and CSRP3 gene polymorphisms in Korean cattle (Hanwoo), and their associations with carcass and meat quality traits. In this study, SNPs in ACOX1 and CSRP3 genes were identified and their associations with carcass and meat quality traits were investigated in 227 Hanwoo animals. Two SNPs (g.224G> A and g.19491G>A) in ACOX1 gene and one SNP (g.14859C>T) in CSRP3 gene were identified in Hanwoo and sequence analysis indicated that these SNPs were located in the coding regions. The allele frequencies of ACOX1 g.224G>A and g.19491G>A SNPs were 0.57, 0.43, and 0.56 and 0.44, respectively, For CSRP3 g.14859C>T polymorphism, the C and T allele frequencies were 0.64 and 0.36, respectively. The Hanwoo cattle were used to detect PCR-RFLP patterns for estimating the allele frequencies. Single marker association analyses were performed between genotype of each SNP, and carcass and meat quality association traits to evaluate the relationships in Hanwoo. The g.224G>A SNP genotypes of ACOX1 gene, which was significantly associated with meat quantity grade at slaughter (P<0.03) and backfat thickness tended to be greater (P=0.06) in Hanwoo. The previously identified g.14859C>T SNP was used in this study and the obtained genotype and allele frequencies are almost similar with the previous results reported by Bhuiyan et al. (2007). However, no significant association was found between g.19491G>A SNP in the ACOX1 and g.14859C>T SNP genotypes of CSRP3 gene and considered carcass and meat quality traits. In conclusion, the information on the identified SNPs in CSRP3 and ACOX1 genes could be useful for further association study and haplotype analysis for the development of carcass and meat quality traits in Hanwoo.

Identification and phylogenetic analysis of the human endogenous retrovirus HERV-W pol in cDNA library of human fetal brain (인간태아의 뇌로부터 유래된 cDNA liberary에서 내생레트로바이러스 HERV-W pol 유전자의 동정과 계통)

  • Kim, Heui-Soo;Jeon, Seung-Heui;Yi, Joo-Mi;Kim, Tae-Hyung;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.291-297
    • /
    • 2003
  • A human endogenous retroviral family (HERV-W) has recently been described that is related to multiple sclerosis-associated retrovirus (MSRV) sequences that have been identified in particles recovered from monocyte cultures from patients with multiple sclerosis. Two pol fragments (HWP-FB10 and HWP-FBl2) of HERV-W family were identified and analysed by the PCR approach with cDNA library of human fetal brain. They showed 89 percent nucleotide sequence similarity with that of the HERV-W (accession no. AF009668). Deletion/insertion or point mutation in the coding region of the pol fragments from human fetal brain resulted in amino acid frameshift that induced a mutated protein. Phylogenetic analysis of the HERV-W family from GenBank database indicates that the HWP-FB10 is very closely related to the AC000064 derived from human chromosome 7q21-q22. Further studies on the genetic relationship with neighbouring genes and functional role of these new HERV-W pol sequences are indicated.

A Study on Motion Estimation Encoder Supporting Variable Block Size for H.264/AVC (H.264/AVC용 가변 블록 크기를 지원하는 움직임 추정 부호기의 연구)

  • Kim, Won-Sam;Sohn, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1845-1852
    • /
    • 2008
  • The key elements of inter prediction are motion estimation(ME) and motion compensation(MC). Motion estimation is to find the optimum motion vectors, not only by using a distance criteria like the SAD, but also by taking into account the resulting number of 비트s in the 비트 stream. Motion compensation is compensate for movement of blocks of current frame. Inter-prediction Encoding is always the main bottleneck in high-quality streaming applications. Therefore, in real-time streaming applications, dedicated hardware for executing Inter-prediction is required. In this paper, we studied a motion estimator(ME) for H.264/AVC. The designed motion estimator is based on 2-D systolic array and it connects processing elements for fast SAD(Sum of Absolute Difference) calculation in parallel. By providing different path for the upper and lower lesion of each reference data and adjusting the input sequence, consecutive calculation for motion estimation is executed without pipeline stall. With data reuse technique, it reduces memory access, and there is no extra delay for finding optimal partitions and motion vectors. The motion estimator supports variable-block size and takes 328 cycles for macro-block calculation. The proposed architecture is local memory-free different from paper [6] using local memory. This motion estimation encoder can be applicable to real-time video processing.

Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR (Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색)

  • Kim, Se Hee;Heo, Seong;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.565-573
    • /
    • 2010
  • Thinning of apple fruitlets is one of the most laborious and important works for the improvement of fruit quality and for the promotion of sufficient flower bud formation to prevent alternate bearing in commercial cultivars. Lateral fruits of self-thinning apple cultivars fall naturally within 30 days after full bloom and only central fruit remains to mature. Differences of gene expression between central fruit and lateral fruit were investigated by differential display (DD) PCR. Partial cDNAs of 30 clones from the central fruit and 24 clones from the lateral fruit were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism were significantly higher in pedicels of lateral fruit than in pedicels of central fruit. On the other hand, the up-regulation of proteins involved in anthocyanin and flavanol biosynthesis and ethylene synthesis were observed in pedicels of central fruit. In Real time PCR analysis, cytochrome P450 gene was confirmed as showing a higher expression level in lateral fruit than in central fruit. The results of this study indicate that differentially expressed genes are related to self-thinning characteristics in apple tree.

Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.) (땅콩에서 고 올레인산 형질관련 분자마커의 선발)

  • Yang, Kiwoung;Pae, Suk-Bok;Park, Chang-Hwan;Lee, Myoung Hee;Jung, Chan-Sik;Son, Jeong-Hee;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.507-514
    • /
    • 2010
  • Peanut(Arachis hypogaea L.) is one of the major oilseed crops. The peanut oil consists of palmitic, oleic and linoleic acids, which are present at levels of 10%, 36-67% and 15-43%, respectively. High oleate mutant of peanut F435 contains 80% oleate and as little as 2% linoleate in seed oil. Previous study indicated that delta 12 fatty acid desaturase is a major enzyme controlling the oleate content in seeds of oilseed crops. F435 sequence alignment of their coding regions disclosed that an extra A(adenine) was inserted at the position +2,823 bp of delta 12 fatty acid desaturase gene. This study was to develop molecular marker (SNP marker) co-segregating with the high oleate trait. Chopyeong ${\times}$ F435 $F_2$ 41 population were investigated using molecular marker and fatty acid assay (NIR and gas chromatography). Finally, this marker segregates Chopyeong type 26 lines, heterotype 9 lines and F435 type 6 lines. These results in our study suggested that SNP marker conform fatty acid assay.

Characterization of Oszinc626, knock-out in zinc finger RING-H2 protein gene, in Ac/Ds mutant lines of rice(Oryza sativar L.) (Zinc finger RING-H2 protein관련 Ac/Ds전이인자 삽입 변이체 Oszinc626 유전자의 특성 분석)

  • Park, Seul-Ah;Jung, Yu-Jin;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Park, Yong-Hwan;Eun, Moo-Young;Suh, Seok-Cheol;Lee, Soon-Youl;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Ac/Ds mutant lines of this study were transgenic rice plants, each of which harbored the maize transposable element Ds together with a GUS coding sequence under the control of a promoterless(Ds-GUS). We selected the mutants that were GUS expressed lines, because the GUS positive lines will be useful for identifying gene function in rice. One of these mutants was identified knock-out at Oszinc626(NP_001049991) gene, encoding a RING-H2 zinc-finger protein, by Ds insertion. In this mutant, while primary root development is normal, secondary root development from lateral root was very poor and seed development was incomplete compare with normal plant. RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, a few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. The consensus of the RING-H2(C3-H2-C3 type) domain for this group of protein is $Cys-X_2-Cys-X_{28}-Cys-X-His-X_2-His-X_2-Cys-X_{14}-Cys-X_2-Cys$. Oszinc626 encodes a predicted protein product of 445 amino acids residues with a molecular mass of 49 kDa, with a RING-zinc-finger motif located at the extreme end of the C-terminus. RT-PCR analysis indicated that the expression of Oszinc626 gene was induced by IAA, cold, dehydration, high-salinity and abscisic acid, but not by 2,4-D, and the transcription of Oszinc626 gene accumulated primarily in rice immature seeds, root meristem and shoots. The gene accumulation patterns were corresponded with GUS expression.

Minisatellite 5 of SLC6A18 (SLC6A18-MS5): Relationship to Hypertension and Evolutional Level (SLC6A18 유전자의 minisatellites 5 (SLC6A18-MS5)의 고혈압과의 관련성 및 진화적 의미)

  • Heo, Chang-Hwan;Lee, Sang-Yeop;Seol, So-Young;Kwon, Jeong-Ah;Jeong, Yun-Hee;Chung, Chung-Nam;SunWoo, Yang-Il
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1733-1738
    • /
    • 2008
  • SLC6A18, one of the neurotransmitters, was reported the possible relationship to hypertension, and it contained eight blocks of minisatellites. In this study, SLC6A18-MS5 sequence which showed the highest heterozygosity among seven minisatellites was analyzed using the Transfac software, the putative binding sites for the transcription factor Pax4 and HNF4 were discovered as a result. The HNF4 is involved in the diabetes pathway and suggested the relationship to hypertension. Thus, we investigated the putative functional significance of allelic variation in this minisatellites with respect to susceptibility for hypertension. To address this possibility, we analyzed genomic DNA from the blood of 301 hypertension-free controls and 184 cases with hypertension. A statistically significant association was not identified between the allelic distribution of SLC6A18-MS5 and occurrence of hypertension. We then examined the meiotic segregation of SLC6A18-MS5 and it was transmitted following Mendelian inheritance. Therefore, this locus could be useful markers for paternity mapping and DNA fingerprinting. Moreover, we undertook a comprehensive analysis of the genomic sequence to address the evolutionary events of these variable repeats. SLC6A18 minisatellites regions are only conserved in human and primates. This result suggestedthat intronic minisatellites analysis is powerful evolution marker for the non-coding regions in primates and can provide a great insight to the molecular evolution of repeated region in primates.