DOI QR코드

DOI QR Code

Association of a c.1084A>G (p.Thr362Ala)Variant in the DCTN4 Gene with Wilson Disease

  • Lee, Robin Dong-Woo (Bel Air High School) ;
  • Kim, Jae-Jung (Asan Institute for Life Sciences, University of Ulsan College of Medicine) ;
  • Kim, Joo-Hyun (Asan Institute for Life Sciences, University of Ulsan College of Medicine) ;
  • Lee, Jong-Keuk (Asan Institute for Life Sciences, University of Ulsan College of Medicine) ;
  • Yoo, Han-Wook (Asan Institute for Life Sciences, University of Ulsan College of Medicine)
  • Received : 2011.05.09
  • Accepted : 2011.06.10
  • Published : 2011.03.01

Abstract

Purpose: Wilson disease is an autosomal recessive disorder which causes excessive copper accumulation in the hepatic region. So far, ATP7B gene is the only disease-causing gene of Wilson disease known to date. However, ATP7B mutations have not been found in ~15% of the patients. This study was performed to identify any causative gene in Wilson disease patients without an ATP7B mutation in either allele. Materials and Methods: The sequence of the coding regions and exon-intron boundaries of the five ATP7B-interacting genes, ATOX1, COMMD1, GLRX, DCTN4, and ZBTB16, were analyzed in the 12 patients with Wilson disease. Results: Three nonsynonymous variants including c.1084A>G (p.Thr362Ala) in the exon 12 of the DCTN4 gene were identified in the patients examined. Among these, only p.Thr362Ala was predicted as possibly damaging protein function by in silico analysis. Examination of allele frequency of c.1084A>G (p.Thr362Ala) variant in the 176 patients with Wilson disease and in the 414 normal subjects revealed that the variant was more prevalent in the Wilson disease patients (odds ratio [OR]=3.14, 95% confidence interval=1.36-7.22, P=0.0094). Conclusion: Our result suggests that c.1084A>G (p.Thr362Ala) in the ATP7B-interacting DCTN4 gene may be associated with the pathogenesis of Wilson disease.

목 적: 윌슨병은 간조직에 구리의 과도한 침착으로 발병하는 상염색체 열성 유전질환이다. 지금까지 ATP7B 유전자가 유일한 원인유전자로 알려져 왔다. 그러나, 약 15%의 환자에서는 ATP7B 유전자 돌연변이가 발견되지 않는다. 본 연구는 ATP7B 유전자의 돌연변이가 발견되지 않은 윌슨병 환자를 대상으로 새로운 원인 유전자를 발견하기 위하여 시행되었다. 대상 및 방법: ATP7B 돌연변이가 발견되지 않은 12명의 윌슨병 환자를 대상으로 ATP7B 와 상호작용을 하는 것으로 알려진 ATOX1, COMMD1, GLRX, DCTN4와 ZBTB16 유전자의 전사부위와 엑손-인트론 경계부위의 염기서열을 분석하였다. 결 과: DCTN4 유전자의 12번 엑손에 존재하는 c.1084A>G(p.Thr362Ala)를 포함하는 3가지의 변이가 환자에서 발견되었다. in silico 분석을 통해 3가지 변이 중 c.1084A>G가 유일하게 단백질 기능 변화를 일으킬 것으로 예측되었다. 176명의 윌슨병 환자와 414명의 정상인을 대상으로 이 변이의 빈도를 조사한 결과, 정상인보다 윌슨병 환자에서 더 높은 빈도를 나타내었다(상대비, odds ratio [OR]=3.14, 95% 신뢰도=1.36-7.22, P=0.0094). 결 론: 본 연구의 결과는 ATP7B 와 상호작용하는 DCTN4 유전자의 c.1084A>G (p.Thr362Ala) 다형성이 윌슨병의 발병과 연관이 있음을 시사한다.

Keywords

References

  1. de Bie P, Muller P, Wijmenga C, Klomp LW. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 2007;44:673-88. https://doi.org/10.1136/jmg.2007.052746
  2. Lutsenko S, Tsivkovskii R, Walker JM. Functional properties of the human copper-transporting ATPase ATP7B (the Wilson's disease protein) and regulation by metallochaperone ATOX1. Ann N Y Acad Sci 2003;986:204-11. https://doi.org/10.1111/j.1749-6632.2003.tb07161.x
  3. Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1. Biochemistry 2008;47:7423-9. https://doi.org/10.1021/bi8004736
  4. Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD. The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 2003;278:41593-6. https://doi.org/10.1074/jbc.C300391200
  5. Lim CM, Cater MA, Mercer JF, La Fontaine S. Copperdependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem Biophys Res Commun 2006;348:428-36. https://doi.org/10.1016/j.bbrc.2006.07.067
  6. Ko JH, Son W, Bae GY, Kang JH, Oh W, Yoo OJ. A new hepatocytic isoform of PLZF lacking the BTB domain interacts with ATP7B, the Wilson disease protein, and positively regulates ERK signal transduction. J Cell Biochem 2006;99:719-34. https://doi.org/10.1002/jcb.20980
  7. Lim CM, Cater MA, Mercer JF, La Fontaine S. Copperdependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A. J Biol Chem 2006;281:14006-14. https://doi.org/10.1074/jbc.M512745200
  8. Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson's disease: a cohort study. Gut 2007;56:115-20. https://doi.org/10.1136/gut.2005.087262
  9. van De Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 2002;11:165-73. https://doi.org/10.1093/hmg/11.2.165
  10. Coronado VA, Bonneville JA, Nazer H, Roberts EA, Cox DW. COMMD1 (Murr1) as a candidate in patients with copper storage disease of undefined etiology. Clin Genet 2005;68:548-51. https://doi.org/10.1111/j.1399-0004.2005.00524.x
  11. Stuehler B, Reichert J, Stremmel W, Schaefer M. Analysis of the human homologue of the canine copper toxicosis gene Murr1 in Wilson disease patients. J Mol Med 2004;82:629-34.