DOI QR코드

DOI QR Code

Characterization of Oszinc626, knock-out in zinc finger RING-H2 protein gene, in Ac/Ds mutant lines of rice(Oryza sativar L.)

Zinc finger RING-H2 protein관련 Ac/Ds전이인자 삽입 변이체 Oszinc626 유전자의 특성 분석

  • Park, Seul-Ah (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Jung, Yu-Jin (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Ahn, Byung-Ohg (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Yun, Doh-Won (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Ji, Hyeon-So (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Park, Yong-Hwan (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Eun, Moo-Young (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Suh, Seok-Cheol (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Lee, Soon-Youl (Bioengineering, Hankyong National University) ;
  • Lee, Myung-Chul (Cell and Genetics Division, National Institute of Agricultural Biotechnology, RDA)
  • 박슬아 (농업생명공학연구원 세포유전과) ;
  • 정유진 (농업생명공학연구원 세포유전과) ;
  • 안병옥 (농업생명공학연구원 세포유전과) ;
  • 윤도원 (농업생명공학연구원 세포유전과) ;
  • 지현소 (농업생명공학연구원 세포유전과) ;
  • 박용환 (농업생명공학연구원 세포유전과) ;
  • 은무영 (농업생명공학연구원 세포유전과) ;
  • 서석철 (농업생명공학연구원 세포유전과) ;
  • 이순열 (한경대학교 응용생물과학과) ;
  • 이명철 (농업생명공학연구원 세포유전과)
  • Published : 2008.09.30

Abstract

Ac/Ds mutant lines of this study were transgenic rice plants, each of which harbored the maize transposable element Ds together with a GUS coding sequence under the control of a promoterless(Ds-GUS). We selected the mutants that were GUS expressed lines, because the GUS positive lines will be useful for identifying gene function in rice. One of these mutants was identified knock-out at Oszinc626(NP_001049991) gene, encoding a RING-H2 zinc-finger protein, by Ds insertion. In this mutant, while primary root development is normal, secondary root development from lateral root was very poor and seed development was incomplete compare with normal plant. RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, a few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. The consensus of the RING-H2(C3-H2-C3 type) domain for this group of protein is $Cys-X_2-Cys-X_{28}-Cys-X-His-X_2-His-X_2-Cys-X_{14}-Cys-X_2-Cys$. Oszinc626 encodes a predicted protein product of 445 amino acids residues with a molecular mass of 49 kDa, with a RING-zinc-finger motif located at the extreme end of the C-terminus. RT-PCR analysis indicated that the expression of Oszinc626 gene was induced by IAA, cold, dehydration, high-salinity and abscisic acid, but not by 2,4-D, and the transcription of Oszinc626 gene accumulated primarily in rice immature seeds, root meristem and shoots. The gene accumulation patterns were corresponded with GUS expression.

본 연구는 동진벼 유래의 Ac/Ds 삽입변이집단의 GUS 분석을 통하여 뿌리 및 미숙종자에서 강하게 GUS가 발현한 개체를 선발하여 FST(flanking sequence tag) 분석 한 결과 Ds 전이 인자가 3번 염색체 zinc finger RING-H2 관련 Oszinc626 유전자의 첫 번째 exon 부위에 single copy로 삽입되어 있었으며, 선발변이체는 뿌리 및 종자 발달이 정상인 동진벼에 비해 매우 낮은 것으로 나타났다. Oszinc626 유전자는 RING-H2 type(C3-H2-C3)으로 $Cys-X_2-Cys-X_{28}-Cys-X-His-X_2-His-X_2-Cys-X_{14}-Cys-X_2-Cys$ 배열이 C-terminus 가장 말단에 위치하며, 49 kDa의 분자량을 가지고 있다. 또한 Southern blot 분석에서 Oszinc626 유전자는 벼 게놈상에 single copy로 존재하였다. RT-PCR을 통한 돌연변이 유전자의 발현분석 결과 250 mM의 염과, $4^{\circ}C$ 저온등과 같은abiotic stress에 의해 발현이 증가함을 보였고, 호르몬처리에 있어서 ABA와 IAA의 식물호르몬을 처리했을 경우 24시간까지 계속해서 발현양이 증가하는 것을 보이는 반면, 2,4-D 처리의 경우 30분 후에 발현이 일시적으로 증가되었으나 이후 발현이 급속히 감소한 것을 보였다. 벼의 조직 별 발현 검정에서 미성숙한 종자, 뿌리 분열조직 및 신초 등 주로 생장점 부위에서 강하게 발현되는 것을 보임에 따라 Oszinc626 유전자의 경우 식물의 생장에 관여하는 주동 유전자의 하나로 판단된다.

Keywords

References

  1. Borden KLB, Freemont PS, (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6: 395-401 https://doi.org/10.1016/S0959-440X(96)80060-1
  2. Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol 17: 677-699 https://doi.org/10.1146/annurev.cellbio.17.1.677
  3. Chin HG., Choe MS, Lee SH, Park SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD (1999) Molecular Analysis of Rice Plants Harboring an Ac/Ds Transposable Element-Mediated Gene Trapping System. Plant J 19: 615-624 https://doi.org/10.1046/j.1365-313X.1999.00561.x
  4. Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a $G\beta$ homologous domain. Cell 71: 791-801 https://doi.org/10.1016/0092-8674(92)90555-Q
  5. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteinerich sequence motif. Cell 64: 483-484 https://doi.org/10.1016/0092-8674(91)90229-R
  6. Freemont PS (2000) Ubiquitination: RING for destruction? Curr Biol 10: R84-R87 https://doi.org/10.1016/S0960-9822(00)00287-6
  7. Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266: 605-614 https://doi.org/10.1126/science.266.5185.605
  8. Han CD, Chin HG., Choe MS, Lee SH, Park SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ (1999) Molecular Analysis of Rice Plants Harboring an Ac/Ds Transposable Element-Mediated Gene Trapping System. Plant J. 19: 615-624 https://doi.org/10.1046/j.1365-313X.1999.00561.x
  9. Han CD (2002) Rice functional genomics by transposon mutagenesis. Asia Pacific Biotech News 6: 930-935 https://doi.org/10.1142/S0219030302001933
  10. Hayashi H, Czaja I, Lubenow H, Schell J, Walden, R (1992) Phytohormone-independent division of tobacco protoplastderived cells. Science 258: 1350-3 https://doi.org/10.1126/science.1455228
  11. Hiei Y, Ohta T, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  12. Himmelbach A, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6: 470-479 https://doi.org/10.1016/S1369-5266(03)00090-6
  13. Jensen RB, Jensen KL, Jespersen HM, Skriver K (1998) Widespread occurrence of a highly conserved RING-H2zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett 436: 283-287 https://doi.org/10.1016/S0014-5793(98)01143-0
  14. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405 https://doi.org/10.1007/BF02667740
  15. Kim CM, Je BI, Piao HL, Park SJ, Kim JM, Chon NS, Sun B, Park SH, Park JY, Lee EJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi GH, Nam MH, Cha YS, Yun DW, Eun MY, Han CD (2002) Reprogramming of the activity of Ac/Ds transposon family during plant regeneration in rice. Mol Cell 14: 231-237
  16. Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi GH, Nam MH, Cha YS, Yun DW, Eun MY, Han CD (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39: 252-263 https://doi.org/10.1111/j.1365-313X.2004.02116.x
  17. Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12: 1067-1078 https://doi.org/10.1046/j.1365-313X.1997.12051067.x
  18. Lechner E, Goloubinoff P, Genschik P, Shen WH (2002) A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of gene in Arabidopsis. Gene 290: 63-71 https://doi.org/10.1016/S0378-1119(02)00556-5
  19. Martinez-Garcia M, Garciduenas-Pina C. Guzman P (1996) Gene isolation in Arabidopsis thaliana by conditional overexpression of cDNAs toxic to Saccharomyces cerevisiae: identification of a novel early response zinc-finger gene. Mol Gen Genet 252: 587-596
  20. McNellis TW, Arnim AGv, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a lightinactivable repressor of photomorphogenesis. Plant Cell 6: 1391-400 https://doi.org/10.1105/tpc.6.10.1391
  21. Meinke DW (1994) Seed developement in Arabidopsis thaliana. In: Meyerowitz EM, Somerville CR (eds), Arabidopsis, Vol. 27, Cold Spring Harbor Laboratory Press, pp 253-295
  22. Meinke DW (1995) Molecular genetics of plant embryogenesis. Annu Rev Plant Physiol. Plant Mol Biol 46: 369-394 https://doi.org/10.1146/annurev.pp.46.060195.002101
  23. Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccararomyces cerevisiae. J Biol Chem 269: 8792-8796
  24. Molnar G, Bancos S, Nagy F, Szkeres M (2002) Characterization of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 215: 127-133 https://doi.org/10.1007/s00425-001-0723-z
  25. Park SJ, Piao HL, Xuan YH, Park SH, Je BI, Kim CM, Lee EJ, Park SH, Ryu BC, Lee KH, Lee GH, Nam MH, Yeo US, Lee MC, Yun DW, Eun MY, Han CD (2006) Analysis of Intragenic Ds Transpositions and Excision Events Generating Novel Allelic Variation in Rice. Mol Cells 21: 284-293
  26. Park SH, Kim CM, Je BI, Park SH, Park SJ, Piao HL, Xuan Y, Choe MS, Satoh K, Kikuchi S, Lee KH, Cha YS, Ahn BO, Ji HS, Yun DW, Lee MC, Suh SC, Eun MY, Han CD (2007) A Ds-insertion mutant of OSH6 (Oriza sativa homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227: 1-12 https://doi.org/10.1007/s00425-007-0576-1
  27. Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep. 15: 727-730 https://doi.org/10.1007/BF00232216
  28. Ruqiang X, Qingshun QL (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant molecular biology 53: 27-50 https://doi.org/10.1023/B:PLAN.0000009259.75314.15
  29. Saurin AJ, Borden KLB, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci cc: 208-214 https://doi.org/10.1016/0968-0004(96)10036-0
  30. Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137: 13-30 https://doi.org/10.1104/pp.104.052423
  31. Takayama KM, Inouye M (1990). Antisense RNA. Cut Rev Biochem molec Biol 25: 155-184 and 306 https://doi.org/10.3109/10409239009090608
  32. Thomas TL (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401-1410 https://doi.org/10.1105/tpc.5.10.1401
  33. Wayne F, Terry AP, Naomi R, Jack L, Rajan TV (1985) Retroviral insertional mutagenesis of a target allele in a heterozygous murine cell line. Proc Nati Acad Sci USA 82: 6600-6604
  34. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery- Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13: 19-50 https://doi.org/10.1080/02648725.1996.10647923
  35. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133: 29-36 https://doi.org/10.1104/pp.103.025395
  36. Xiuhong Y, Chao S, Yuanlei H, Zhongping L (2008) Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci. 33: 103-112 https://doi.org/10.1007/s12038-008-0026-7
  37. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. Ed3, The International Rice Research Institute Press, Manila
  38. Yun DJ (2005) Molecular mechanism of plant adaption to high salinity. Korean J Plant Biotechnol 32: 1-14 https://doi.org/10.5010/JPB.2005.32.1.001
  39. Zhu JK (2002) Salt and drought stress signal transduction in plant. Annu Tev Plant Biol 53: 247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329
  40. Zou J, Taylor DC (1997) Cloning and molecular characterization of an Arabidopsis thaliana RING zinc finger gene expressed preferentially during seed development. Gene 196: 291-295 https://doi.org/10.1016/S0378-1119(97)00258-8