Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.)

땅콩에서 고 올레인산 형질관련 분자마커의 선발

  • 양기웅 (국립식량과학원 기능성작물부) ;
  • 배석복 (국립식량과학원 기능성작물부) ;
  • 박장환 (국립식량과학원 기능성작물부) ;
  • 이명희 (국립식량과학원 기능성작물부) ;
  • 정찬식 (국립식량과학원 기능성작물부) ;
  • 손정희 (국립식량과학원 기능성작물부) ;
  • 박금룡 (국립식량과학원 기능성작물부)
  • Received : 2010.11.23
  • Published : 2010.12.31

Abstract

Peanut(Arachis hypogaea L.) is one of the major oilseed crops. The peanut oil consists of palmitic, oleic and linoleic acids, which are present at levels of 10%, 36-67% and 15-43%, respectively. High oleate mutant of peanut F435 contains 80% oleate and as little as 2% linoleate in seed oil. Previous study indicated that delta 12 fatty acid desaturase is a major enzyme controlling the oleate content in seeds of oilseed crops. F435 sequence alignment of their coding regions disclosed that an extra A(adenine) was inserted at the position +2,823 bp of delta 12 fatty acid desaturase gene. This study was to develop molecular marker (SNP marker) co-segregating with the high oleate trait. Chopyeong ${\times}$ F435 $F_2$ 41 population were investigated using molecular marker and fatty acid assay (NIR and gas chromatography). Finally, this marker segregates Chopyeong type 26 lines, heterotype 9 lines and F435 type 6 lines. These results in our study suggested that SNP marker conform fatty acid assay.

땅콩의 delta 12 fatty acid desaturase 유전자의 염기서열에서 고 올레인산을 함유하는 F435를 선발할 수 있는 PCR 기초 분자표지마커를 제작하였다. 본 연구는 포인트 뮤테이션(point mutation)의 결과로 나타나는 고 올레인산을 SNP 마커를 이용하여 하나의 염기서열차이(아데닌 삽입)를 이용하여 판별할 수 있는 분자마커이다. 제작한 마커가 고 올레인산 관련 특이 마커인지 확인하기 위하여, 일반 땅콩 9 품종과 F435를 PCR 후 아가로스 겔 상에서 확인하여 고 올레인산 특이 분자마커임을 확인하였고, 조평 ${\times}$ F435의 $F_2$ 교배조합 41 계통을 이용하여 분리양상을 확인하였다. 그 결과 지방산 분석을 하지 않고도 고 올레인산 함유 계통을 손쉽게 선발할수 있었다. 특히, 헤테로 형질을 나타내는 계통도 선발 가능하였다. 분자마커의 결과가 지방산 수준에서 일치하는지 확인하기 위해 NIR 및 가스크로마토그래피 분석결과를 알아보았데 고 올레인산 관련 분자표지마커가 NIR 및 가스크로마토그래피 분석결과와 일치하였다. 고 올레인산 땅콩의 유전적 차이를 이용하여 분자표지마커를 개발 함으로서 고 올레인산 땅콩의 정확한 선발과 품종을 개발하는데 있어서 세대단축의 효과를 가져올 것이다.

Keywords

Acknowledgement

Supported by : 국립식량과학원

References

  1. Cheong YK, Doo HS, Park KH, Ko JC, Ryu JH, Kim SD. 2004. Yield and quality characteristics of peanut mutants induced by gamma ray. Korea J. Breed. 36(5): 260-265.
  2. Doyle JJ, Doyle JL 1990. Isolation of DNA from small amounts of plant tissue. BRL Focus 12:13-15.
  3. Garces R, Mancha M. 1991. In vitro oleate desaturase in developing sunflower seeds. Phytochemistry 30:2127-2130. https://doi.org/10.1016/0031-9422(91)83599-G
  4. IAEA 1970. Crop plant characters to be improved by mutation breeding. Manual on Mutation Breeding (Tech. Rep. seri. No. 119). Vienna pp. 149-176.
  5. Jung S, Powell G, Moore K, Abbott A. 2000a. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol. Gen. Genet. 263:806-811. https://doi.org/10.1007/s004380000243
  6. Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. 2000b. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). I. Isolation and characterization of two genes encoding microsomal oleoyl- PC desaturases. Mol. Gen. Genet. 263:796-805. https://doi.org/10.1007/s004380000244
  7. Kinney AJ. 1996. Development of genetically engineered soybean oils for food applications. J. Food Lipids 3:273- 292. https://doi.org/10.1111/j.1745-4522.1996.tb00074.x
  8. Lee MS, Guerra DJ. 1994. Biochemical characterization of temperature-induced changes in lipid metabolism in a high-oleic acid mutant of Brassica rapa L. Arch. Biochem. Biophys. 315:203-211. https://doi.org/10.1006/abbi.1994.1491
  9. Lee JI, Park HW. 1982. Evaluation of oil content and fatty acid composition in peanut varieties. Korean J. Breed. 14(2):152-160.
  10. Liu Q, Singh SP, Green AG. 2002. High-stearic and higholeic cottonseed oils produced by hairpin RNA- mediated posttranscriptional gene silencing. Plant Physiol. 129:1732- 1743. https://doi.org/10.1104/pp.001933
  11. Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK. 2000. Isolation and characterization of the delta 12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymerphisms for the high oleate trait in Spanish market-type lines. Theor. Appl. Genet. 101:1131- 1138. https://doi.org/10.1007/s001220051589
  12. Martin BA, Rinne RW. 1986. A comparison of oleic acid metabolism in the soybean (Glycine max [L.] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. Plant Physiol. 81:41-44. https://doi.org/10.1104/pp.81.1.41
  13. Moore KM, Knauft DA. 1989. The inheritance of higholeic acid in peanut. J. Hered. 80:252-253. https://doi.org/10.1093/oxfordjournals.jhered.a110845
  14. Norden AJ, Gorbet DW, Knauft DA, Young CT. 1987. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 14:7-11. https://doi.org/10.3146/i0095-3679-14-1-3
  15. Pan LJ, Yu SL, Yang QL, Min P, Cao YL. 2007. Molecular cloning and sequence analysis of delta 12-fatty acid desaturase in peanut (Arachis hypogaea L.). J. Peanut Sci. 36:5-10.
  16. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. 2004. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor. Appl. Genet. 108:1492-1502. https://doi.org/10.1007/s00122-004-1590-3
  17. Sekhon KS, Gupta SK, Ahuja KL, Jaswal SV. 1980. Variability in fatty acid composition in semi-spreading peanut types. Olegineux 35:406-412.
  18. Worthington RE, Hammons RO. 1977. Variability in fatty acid composition among Arachis genotypes: A potential source of product improvement. J. Am. Oil Chem. Soc. 54:105A-108A. https://doi.org/10.1007/BF02912383
  19. Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H. 2008. Comparison of the delta 12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J. Genet. Genomics 35:679-685. https://doi.org/10.1016/S1673-8527(08)60090-9
  20. Zhang HT, Shan L, Quan XQ, Bi YP, Yang JS, Wang XL. 2006. Functional analysis of an Arachis hypogaea L. delta 12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. J. Peanut Sci. 35:1-7.