• Title/Summary/Keyword: Cobalt nanoparticles

Search Result 55, Processing Time 0.023 seconds

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Magnetic CoFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant

  • Sadri, Fariba;Ramazani, Ali;Massoudi, Abdolhossain;Khoobi, Mehdi;Azizkhani, Vahid;Tarasi, Roghayeh;Dolatyari, Leila;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2029-2032
    • /
    • 2014
  • Magnetically nano-$CoFe_2O_4$ efficiently catalyzes oxidation of primary and secondary benzylic and aliphatic alcohols to give the corresponding carbonyl products in good yields. The reactions were carried out in an aqueous medium at room temperature in the presence of oxone (potassium hydrogen monopersulfate) as an oxidant. In addition, the catalysts could be reused up to 6 runs without significant loss of activities. Catalyst was characterized by SEM, XRD and IR.

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Study on Synthesis and Magnetic Properties of Cobalt Nanoparticles in the Polymer Film (코발트 나노 입자가 도입된 고분자 박막의 제조 및 자성 연구)

  • 박일우;윤명근;김유경;김영미;김종현;전미선;조용민;김상우
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.136-137
    • /
    • 2003
  • 고분자 재료인 이온교환수지 박막 안에서의 이온교환반응과 전기화학적 환원반응을 이용하여 코발트 나노 입자를 제조하였다. 투과전자현미경 결과로부터 고분자 박막 (MF-4SK) 1 gram에 코발트가 7.8$\times$$10^{19}$ atoms 포함된 시편에서 코발트가 나노 크기로 입자를 형성하고 있음을 확인하였으며, 자기측정 결과로부터 코발트 나노 입자가 blocking temperature (T$_{B}$) 이상에서 초상자성을 나타내는 것을 확인하였다. 이 결과는 고분자 박막 내에서 코발트 나노 입자가 자성 단상(single domain) 구조를 이루고 있음을 보여주는 것으로, 강자성 나노 입자들의 초상자성 거동을 고찰하였다.

  • PDF

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Thermal Decomposition Synthesis of CoSb3 Nanoparticle by Hot Injection Method (열분해와 Hot Injection법을 이용한 CoSb3 나노분말합성)

  • Kim, Min-Suk;Ahn, Jong-Pil;Kim, Kyung-Ja;Park, Joo-Seok;Kim, Kyoung-Hun;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.476-479
    • /
    • 2013
  • $CoSb_3$ with its high electrical conductivity, Seebeck coefficient and rather low thermal conductivity is quite a promising material for thermoelectric conversion applications. A potentially high figure of merit (ZT) can be achieved by a nanostructure evolution of thermoelectric materials. In this work, $CoSb_3$ nanoparticles were synthesized through a thermal decomposition method in cooperation with a hot injection technique. Nano-sized $CoSb_3$ particles were obtained through the thermal decomposition reaction between the pre-heated cobalt-oleate at $320^{\circ}C$ and the injected antimony oleate with room temperature. The results showed that the particle size was increased with increasing synthesis temperature and the crystallinity of particles was improved with temperature but the decomposition of $CoSb_3$ was observed at $320^{\circ}C$. The $CoSb_3$ particles synthesized at $300^{\circ}C$ showed a high purity and an homogeneous shape with average particle size of 26 nm.