Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.6.476

Thermal Decomposition Synthesis of CoSb3 Nanoparticle by Hot Injection Method  

Kim, Min-Suk (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology)
Ahn, Jong-Pil (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Kyung-Ja (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology)
Park, Joo-Seok (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Kyoung-Hun (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Hyung-Sun (School of Materials Engineering, Inha University)
Publication Information
Abstract
$CoSb_3$ with its high electrical conductivity, Seebeck coefficient and rather low thermal conductivity is quite a promising material for thermoelectric conversion applications. A potentially high figure of merit (ZT) can be achieved by a nanostructure evolution of thermoelectric materials. In this work, $CoSb_3$ nanoparticles were synthesized through a thermal decomposition method in cooperation with a hot injection technique. Nano-sized $CoSb_3$ particles were obtained through the thermal decomposition reaction between the pre-heated cobalt-oleate at $320^{\circ}C$ and the injected antimony oleate with room temperature. The results showed that the particle size was increased with increasing synthesis temperature and the crystallinity of particles was improved with temperature but the decomposition of $CoSb_3$ was observed at $320^{\circ}C$. The $CoSb_3$ particles synthesized at $300^{\circ}C$ showed a high purity and an homogeneous shape with average particle size of 26 nm.
Keywords
Cobalt oleate; Antimony oleate; $CoSb_3$ nanoparticle; Thermolysis; Hot-injection; Thermoelectric;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. C. Sales, D. Mandrus, and R. K. Williams, "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials," Science, 272 [5266] 1325-25 (1999).
2 G. S. Nolas, J. L. Cohn, and G. A. Slack, "Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites," Phys. Rev. B, 58 [1] 164-70 (1998).   DOI
3 X. F. Tang, L. M. Zhang, R. Z. Yuan, L. D. Chen, T. Goto, T. Hirai, W. Chen, and C. Uher, "High Temperature Thermoelectric Properties of n-type $BayNi_xCO4_{-x}Sb_{12}$," J. Mater. Res., 16 [12] 3343-46 (2001).   DOI   ScienceOn
4 M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, "High Temperature Transport Properties of Partially Filled $Ca_xCO_4Sb_{12}$ Skutterudites," J. Appl. Phys., 95 [9] 4852-55 (2004).   DOI   ScienceOn
5 K. H. Kim, J. S. Park, and J. P. Ahn, "Joining and Properities of Electrode for $CoSb_3$ Thermoelectric Materials Prepared by a Spark Plasma Sintering Method," J. Kor. Crystal Growth Tech., 20 [1] 30-34 (2010).   DOI   ScienceOn
6 R. J. Buist, "CRC Handbook of Thermoelectrics," pp. 143-155, Ed. by D. M. Rowe, CRC Press, New York, 2005.
7 M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Mller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, "The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric $CoSb_3$," Adv. Funct. Mater., 14 [12] 1189-96 (2004).   DOI   ScienceOn
8 M. J. Kim, H. M. Choi, S. C. Ur, and I. H. Kim, "Thermoelectric Properties of $Co_{1-x}Ni_xSb_3$ Prepared by Encapsulated Induction Melting," Kor. J. Mater. Res., 16 [6] 377-81 (2006).   과학기술학회마을   DOI   ScienceOn
9 T. Caillat, A. Borschchevsky, and J. P. Fleurial, "Properties of Single Crystalline Semiconducting $CoSb_3$," J. Appl. Phys., 80 [8] 4442-49 (1996).   DOI   ScienceOn
10 Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, "Thermoelectric Properties of $CoSb_3$," J. Alloys Compd., 315 [1-2] 193-97 (2001).   DOI   ScienceOn
11 J. X. Zhang, Q. M. Lu, K. G. Liu, L. Zhang, and M. L. Zhou, "Synthesis and Thermoelectric Properties of $CoSb_3$ Compounds by Spark Plasma Sintering," Mater. Lett., 58 [14] 1981-84 (2004).   DOI   ScienceOn
12 J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, "Thermoelectric Properties of $CoSb_3$ and Related Alloys," J. Appl. Phys., 78 [2] 1013-18 (1995).   DOI   ScienceOn
13 J. Yang, Y. C. Chen, J. Peng, X. Song, W. Zhu, J. Su, and R. Chen, "Synthesis of $CoSb_3$ Skutterudite by Mechanical Alloying," J. Alloys Compd., 375 [1-2] 229-32 (2004).   DOI   ScienceOn
14 S. C. Ur, I. H. Kim, and P. Nash, "Solid-State Syntheses and Properties of $Zn_4Sb_3$ Thermoelectric Materials," J. Alloys Compd., 361 [1-2] 84-91 (2003).   DOI   ScienceOn
15 J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, "Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals," Nat. Mater., 3 [12] 891-95 (2004).   DOI   ScienceOn
16 S. G. Kwon and T. Hyeon, "Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides," Acc. Chem. Res., 41 [12] 1696-709 (2008).   DOI   ScienceOn
17 C. M. Donega, P. Liljeroth, and D. Vanmaekelbergh, "Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals," Small, 12 [1] 1152-62 (2005).
18 S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, Nong-Moon Hwang, Je-Geun Park, and Taeghwan, "Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by 'Heating-Up' Process," J. Am. Chem. Soc., 129 [41] 12571-84 (2007).   DOI   ScienceOn
19 P. Mousaw, K. Saranteas, and B. Prytko, "Crystallization Improvements of A Diastereomeric Kinetic Resolution through Understanding of Secondary Nucleation," Am. Chem. Soc., 12 [2] 243-48 (2008).
20 L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007)   DOI   ScienceOn