DOI QR코드

DOI QR Code

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure

두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조

  • Yu, Ri (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Yoo-Jin (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Pee, Jae-Hwan (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Kyung-Ja (Engineering ceramic center, Korea Institute of Ceramic Engineering & Technology)
  • 유리 (한국세라믹기술원 엔지니어링 세라믹 센터) ;
  • 김유진 (한국세라믹기술원 엔지니어링 세라믹 센터) ;
  • 피재환 (한국세라믹기술원 엔지니어링 세라믹 센터) ;
  • 김경자 (한국세라믹기술원 엔지니어링 세라믹 센터)
  • Received : 2010.04.21
  • Accepted : 2010.05.31
  • Published : 2010.06.28

Abstract

Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Keywords

References

  1. S. Sun and H. Zeng: J. Am. Chem. Soc., 204 (2002)1248.
  2. T. Fried, G. Shemer and G. Markovich: Adv. Mater.,13 (2001) 1158. https://doi.org/10.1002/1521-4095(200108)13:15<1158::AID-ADMA1158>3.0.CO;2-6
  3. J. de Vicente, A. V. Delgado, R. C. Plaza, J. D. C Duranand F. Gonzalez-Caballero: Langmuir, 16 (2000) 7954. https://doi.org/10.1021/la0003490
  4. D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong and Y. C.Kang: J. Alloys Compd., 416 (2006) 254.
  5. H. Katsuki and S. Komarneni: J. Am. Ceram. Soc., 86(2003) 183. https://doi.org/10.1111/j.1151-2916.2003.tb03300.x
  6. J. Wang, W. B. White and J. H. Adair: J. Am. Ceram. Soc., 88 (2005) 3449. https://doi.org/10.1111/j.1551-2916.2005.00643.x
  7. M. Hosseini-Zori, F. Bondioli, T. Manfredini and E.Taheri-Nassaj: Dyes Pigment, 77 (2008) 53. https://doi.org/10.1016/j.dyepig.2007.03.006
  8. W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T.Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E.Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi andA. P. Alivisatos: Chem. Mater., 14 (2002) 2113. https://doi.org/10.1021/cm0107878
  9. D. Geriion, F. Pinaud, S. C. Williams, W. J. Parak, D.Zanchet, S. Weiss and A. P. Alivisatos: J. Phys. Chem., 105 (2001) 8861. https://doi.org/10.1021/jp0105488
  10. A. Palani, J. S. Lee, J. Huh, M. Kim, Y. J. Lee, J. H.Chang, K. Lee and S.W. Lee: J. Proteome. Res., 7(2008) 3591. https://doi.org/10.1021/pr800067x
  11. K. Kang, J. Choi, J. H. Nam, S. C. Lee, K. J. Kim, S.W. Lee and J. H. Chang: J. Phys. Chem., 113 (2009)536. https://doi.org/10.1021/jp807081b
  12. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou,D. kundaliya and J. Y. Ying: J. Am. Chem. Soc., 127 (2005) 4990. https://doi.org/10.1021/ja0428863
  13. Y. Kim, J. Pee, J. H. Chang, K. Choi, K. Kim and D.Y. Jung: Chem. Lett., 8 (2009) 843.
  14. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M.Rice, S. X. Wang and G. Li: J. Am. Chem. Soc., 126(2004) 273. https://doi.org/10.1021/ja0380852
  15. T. Hyeon, Y. Chung, J. Park, S. S. Lee, Y. W. Kim and B. H. Park: J. Phys. Chem., 106 (2002) 6831. https://doi.org/10.1021/jp026042m
  16. M. Darbandi, R. Thomann and T. Nann: Chem. Mater.,17 (2005) 5720. https://doi.org/10.1021/cm051467h
  17. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, D. Kundaliyaand J. Y. Ying: Chem. Mater., 18 (2006) 614. https://doi.org/10.1021/cm0512979
  18. C. L. Chang and H. S. Fogler: Langmuir., 13 (1997)3295. https://doi.org/10.1021/la961062z