DOI QR코드

DOI QR Code

열분해와 Hot Injection법을 이용한 CoSb3 나노분말합성

Thermal Decomposition Synthesis of CoSb3 Nanoparticle by Hot Injection Method

  • 김민숙 (한국세라믹기술원 기업협력센터) ;
  • 안종필 (한국세라믹기술원 기업협력센터) ;
  • 김경자 (한국세라믹기술원 기업협력센터) ;
  • 박주석 (한국세라믹기술원 기업협력센터) ;
  • 김경훈 (한국세라믹기술원 기업협력센터) ;
  • 김형순 (인하대학교 신소재공학과)
  • Kim, Min-Suk (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ahn, Jong-Pil (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyung-Ja (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Joo-Seok (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyoung-Hun (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Sun (School of Materials Engineering, Inha University)
  • 투고 : 2013.10.03
  • 심사 : 2013.11.21
  • 발행 : 2013.11.30

초록

$CoSb_3$ with its high electrical conductivity, Seebeck coefficient and rather low thermal conductivity is quite a promising material for thermoelectric conversion applications. A potentially high figure of merit (ZT) can be achieved by a nanostructure evolution of thermoelectric materials. In this work, $CoSb_3$ nanoparticles were synthesized through a thermal decomposition method in cooperation with a hot injection technique. Nano-sized $CoSb_3$ particles were obtained through the thermal decomposition reaction between the pre-heated cobalt-oleate at $320^{\circ}C$ and the injected antimony oleate with room temperature. The results showed that the particle size was increased with increasing synthesis temperature and the crystallinity of particles was improved with temperature but the decomposition of $CoSb_3$ was observed at $320^{\circ}C$. The $CoSb_3$ particles synthesized at $300^{\circ}C$ showed a high purity and an homogeneous shape with average particle size of 26 nm.

키워드

참고문헌

  1. B. C. Sales, D. Mandrus, and R. K. Williams, "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials," Science, 272 [5266] 1325-25 (1999).
  2. G. S. Nolas, J. L. Cohn, and G. A. Slack, "Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites," Phys. Rev. B, 58 [1] 164-70 (1998). https://doi.org/10.1103/PhysRevB.58.164
  3. X. F. Tang, L. M. Zhang, R. Z. Yuan, L. D. Chen, T. Goto, T. Hirai, W. Chen, and C. Uher, "High Temperature Thermoelectric Properties of n-type $BayNi_xCO4_{-x}Sb_{12}$," J. Mater. Res., 16 [12] 3343-46 (2001). https://doi.org/10.1557/JMR.2001.0460
  4. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, "High Temperature Transport Properties of Partially Filled $Ca_xCO_4Sb_{12}$ Skutterudites," J. Appl. Phys., 95 [9] 4852-55 (2004). https://doi.org/10.1063/1.1688463
  5. K. H. Kim, J. S. Park, and J. P. Ahn, "Joining and Properities of Electrode for $CoSb_3$ Thermoelectric Materials Prepared by a Spark Plasma Sintering Method," J. Kor. Crystal Growth Tech., 20 [1] 30-34 (2010). https://doi.org/10.6111/JKCGCT.2010.20.1.030
  6. R. J. Buist, "CRC Handbook of Thermoelectrics," pp. 143-155, Ed. by D. M. Rowe, CRC Press, New York, 2005.
  7. M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Mller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, "The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric $CoSb_3$," Adv. Funct. Mater., 14 [12] 1189-96 (2004). https://doi.org/10.1002/adfm.200400109
  8. M. J. Kim, H. M. Choi, S. C. Ur, and I. H. Kim, "Thermoelectric Properties of $Co_{1-x}Ni_xSb_3$ Prepared by Encapsulated Induction Melting," Kor. J. Mater. Res., 16 [6] 377-81 (2006). https://doi.org/10.3740/MRSK.2006.16.6.377
  9. T. Caillat, A. Borschchevsky, and J. P. Fleurial, "Properties of Single Crystalline Semiconducting $CoSb_3$," J. Appl. Phys., 80 [8] 4442-49 (1996). https://doi.org/10.1063/1.363405
  10. Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, "Thermoelectric Properties of $CoSb_3$," J. Alloys Compd., 315 [1-2] 193-97 (2001). https://doi.org/10.1016/S0925-8388(00)01275-5
  11. J. X. Zhang, Q. M. Lu, K. G. Liu, L. Zhang, and M. L. Zhou, "Synthesis and Thermoelectric Properties of $CoSb_3$ Compounds by Spark Plasma Sintering," Mater. Lett., 58 [14] 1981-84 (2004). https://doi.org/10.1016/j.matlet.2003.11.032
  12. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, "Thermoelectric Properties of $CoSb_3$ and Related Alloys," J. Appl. Phys., 78 [2] 1013-18 (1995). https://doi.org/10.1063/1.360402
  13. J. Yang, Y. C. Chen, J. Peng, X. Song, W. Zhu, J. Su, and R. Chen, "Synthesis of $CoSb_3$ Skutterudite by Mechanical Alloying," J. Alloys Compd., 375 [1-2] 229-32 (2004). https://doi.org/10.1016/j.jallcom.2003.11.036
  14. S. C. Ur, I. H. Kim, and P. Nash, "Solid-State Syntheses and Properties of $Zn_4Sb_3$ Thermoelectric Materials," J. Alloys Compd., 361 [1-2] 84-91 (2003). https://doi.org/10.1016/S0925-8388(03)00418-3
  15. S. G. Kwon and T. Hyeon, "Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides," Acc. Chem. Res., 41 [12] 1696-709 (2008). https://doi.org/10.1021/ar8000537
  16. C. M. Donega, P. Liljeroth, and D. Vanmaekelbergh, "Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals," Small, 12 [1] 1152-62 (2005).
  17. S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, Nong-Moon Hwang, Je-Geun Park, and Taeghwan, "Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by 'Heating-Up' Process," J. Am. Chem. Soc., 129 [41] 12571-84 (2007). https://doi.org/10.1021/ja074633q
  18. J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, "Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals," Nat. Mater., 3 [12] 891-95 (2004). https://doi.org/10.1038/nmat1251
  19. P. Mousaw, K. Saranteas, and B. Prytko, "Crystallization Improvements of A Diastereomeric Kinetic Resolution through Understanding of Secondary Nucleation," Am. Chem. Soc., 12 [2] 243-48 (2008).
  20. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007) https://doi.org/10.1021/cm062948j