• 제목/요약/키워드: Coating Films

검색결과 1,373건 처리시간 0.026초

Effect of annealing temperature on amorphous indium zinc oxide thin films prepared by a sol-gel spin-coating method

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • 한국결정성장학회지
    • /
    • 제22권1호
    • /
    • pp.15-18
    • /
    • 2012
  • Transparent conductive indium zinc oxide thin films were prepared by spin-coating a sol-gel solution. Zinc acetate dihydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] and indium acetate [In$(CH_3COO)_3$] were used as starting precursors, and 2-methoxyethanol with 1-propanol as solvents. Upon annealing in a temperature range from 500 to $1000^{\circ}C$, the thin film crystallizes into polycrystalline $In_2O_3$(ZnO). The lowest electrical resistivity was obtained at an annealing temperature of $700^{\circ}C$ as $2{\Omega}{\cdot}cm$. Average optical transmittances were higher than 80% at all annealing temperatures. These experimental results confirm that the sol-gel spin-coating can be a good simplified practical method for forming transparent electrodes.

Preparation of tungsten metal film by spin coating method

  • Lee, Kwan-Young;Kim, Hak-Ju;Lee, Jung-Ho;Sohn, Il-Hyun;Hwang, Tae-Jin
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2002
  • Metal thin films, which are indispensable constituents of ULSI (Ultra Large Scale Integration) circuits, have been fabricated by physical or chemical methods. However, these methods have a drawback of using expensive high vacuum instruments. In this work, the fabrication of tungsten metal film by spin coating was investigated. First of all, inorganic peroxopolytungstic acid (W-IPA) powder, which is soluble in water, was prepared by dissolving metal tungsten in hydrogen peroxide and by evaporating residual solvent. Then, the solution of W-IPA was mixed with organic solvent, which was spin-coated on wafers. And then, tungsten metal films, were obtained after reduction procedure. By selecting an appropriate organic solvent and irradiating UV, the sheet resistance of the tungsten metal film could be remarkably reduced.

열처리에 따른 BSCCO 용사피막의 초전도특성 (Superconductor characteristics of BSCCO spray films by Heat treatment)

  • 도형준;박경채
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.282-284
    • /
    • 2007
  • The superconductor characteristics of BSCCO spray films by Heat treatment was studied. $Bi_2Sr_2CaCu_2O_x$(Bi-2212) is high-Tc superconductor(HTS) coatings have been prepared by Heat treatment. Where high current carrying capabilities are required and therefore thick film and bulk material are called for, the Bi2Sr2Ca1Cu2O8-d(Bi-2212)compound has evoleved as one of the most promising. and the Bi-2212 HTS coating layer is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating layer by partial melting process. The superconducting characteristics depends on the spray distance which was related to the spray particle melt. The Bi-2212 HTS layer consists of the whisker growth and secondary phase in 2212 layer were observed.

  • PDF

펄스형 DC PACVD 법에의해 미치는 공정인자의 영향 (The Effect of Processing Parameters on the Mechanical Properties of TiN Films by the Pulsed DC PACVD)

  • 김진관;변응선;백운승;이구현;제창웅;윤재홍;이상로
    • 한국표면공학회지
    • /
    • 제30권5호
    • /
    • pp.298-309
    • /
    • 1997
  • Hard Tin coating on tool steel substrate were prepared using the pulsed PACVE. An orthogonal experimental design was employed to find the best deposition conditions for TiN coating and to systematically understand the effect of processing parameters. The small size Taguchi matrix called the L16 was used for experiment and ANOVA(ANalysis of VAriance) was followed to study the effect of main parameters on hardness and adhesion TiN coatings. In conclusion, pulse on/off time ratio and pulsing frequency were the major deposition parameters to determine hardness and adhesion of TiN coating in the pulsed DC PACVE process. (200) preferred orientation, columnar growth and dome-shaped surface morphology of the TiN films gave rise to a high hardness and a good adhesion to the substrates.

  • PDF

Colloidally stable organic-inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film

  • Kim, Nahae;Li, Xinlin;Kim, Se Hyun;Kim, Juyoung
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.209-219
    • /
    • 2018
  • Colloidally stable organic-inorganic (O-I) hybrid nanoparticles could be prepared using an alkoxysilanefunctionalized amphiphilic polymer (AFAP) precursor. O-I hybrid sols could maintain colloidal stability for six months even at 45% solid content and be coated onto glass as well as PET film to form transparent O-I hybrid films. The formation of O-I hybrid nanoparticles dispersed in cured coating films could be confirmed using scanning electron microscopy. The cured coating film showed 3H and 5H pencil hardness on PET and glass, respectively. Nanoindentation measurements also showed that their modulus and hardness was varied with the type of AFAP used in its preparation.

Optimum Synthesis and Characterization of Precursor Solution for a Hard Coating Silica Film Prepared by Sol-Gel Process

  • 김선일;김구열;임형미;이봉우;나재운
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권8호
    • /
    • pp.817-822
    • /
    • 2000
  • Crack-free hard coating siIica films were prepared by sol-gel processfrom twokinds of silicon alkoxide (tetra-ethoxysilane and methyltrimethoxysilane) and two kinds of alcohol (methanol and isopropyl alcohol) with an acid catalyst,acetic acid. A silicate framework of the precursor solution was investigated by infrared spectros-copy (IR) in the process of hydrolysis and condensation. Theextent of the condensation in the intermediates was elucidated by gel permeation chromatography (GPC) and 29Si-NMR spectroscopy. The hard coating films werecharacterized by IR,scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and dif-ferential scanning calroimeter (DSC). The synthetic condition for the crack-free and transparent silica film for-mation was optimized interms of starting materials for the precursor solution as well as preparation method of the silica film.

태양전지 응용을 위한 DLC(Diamond-like Carbon) 반사방지막의 특성 분석 (Diamond-like Carbon Protective Anti-reflection Coating for Solar Cell Application)

  • 최원석;전영숙;김경해;이준신;허진희;정일섭;홍병유
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1737-1739
    • /
    • 2004
  • Diamond-like carbon (DLC) films were prepared with RF-PECVD (Plasma Enhanced Chemical Vapor Deposition) method on coming glass and silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gases. We examined the effects of $CH_4$ to $H_2$ ratios on tribological and optical properties of the DLC films. The structure and surface morphology of the films were examined using Raman spectroscopy and atomic force microscopy (AFM). The hardness of the DLC film was measured with nano-indentor. The optical properties of DLC thin film were investigated by UV/VIS spectrometer and ellipsometry. And also, solar cells were fabricated using DLC as antireflection coating before and after coating DLC on silicon substrate and compared the efficiency.

  • PDF

Alumina Sol을 코팅한 BOPP 복합체의 제조 및 기체 투과 특성 (Preparation of Alumina Sol Coated BOPP Composites and Their Gas Permeation Characteristics)

  • 홍성욱;오재원;고영덕;송기창
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2009
  • 졸-겔 공정은 비교적 간단하고 사용이 편리하며 저렴한 설비투자비가 소요되면서도 우수한 물성 및 차단특성을 갖는 코팅 박막을 얻을 수 있다는 장점이 있다. 졸-겔 공정으로 코팅된 필름은 산소 등의 영향에 의해 부패되기 쉬운 식품, 음료, 약품, 의약품 등의 포장재나 단열제로 응용 가능하다. 본 연구에서는 aluminum isopropoxide를 출발물질로 하여 alumina sol을 제조한 후 실란 커플링제를 첨가하여 코팅 용액을 제조하였다. 또한, 제조된 alumina sol 용액을 이축연신 폴리프로필렌(BOPP)에 코팅하여 복합 필름을 만들고 산소 투과 특성을 측정한 결과 순수한 BOPP에 비해서 산소 투과도가 약 85% 정도 감소되는 효과를 보였다.

Si-N 코팅막의 기계적 물성 및 구조 분석 (Characterization of Silicon Nitride Coating Films)

  • 고철호;김봉섭;윤존도;김광호
    • 한국세라믹학회지
    • /
    • 제42권5호
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

스핀코팅법으로 제작한 산화구리 박막의 일산화질소 가스 감지 특성 (Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method)

  • 황현정;김효진;김도진
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.171-176
    • /
    • 2015
  • We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.