• Title/Summary/Keyword: CoNi

Search Result 2,668, Processing Time 0.035 seconds

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy (합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향)

  • Jeung, Won-Young;Kim, Hyun-Kyung;Lee, Jeong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2005
  • CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.

Effect of Heat-treatment in Low Thermal Expansion Coefficient Fe-Ni-Co alloy for Core Material of Increased Capacity Transmission Line (증용량 송전선 강심용 저열팽창 Fe-Ni-Co 합금에 있어서 용체화처리 영향)

  • 김봉서;유경재;김병걸;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.950-952
    • /
    • 2000
  • Considering the effective distribution coefficient of Ni in Fe-Ni-Co invar alloy containing a little amount of carbon, we investigated on the thermal expansion coefficient(${\alpha}$). Fe-Ni-Co invar alloy had a large thermal expansion coefficient in as-casted compared with solution treated. The thermal expansion coefficient of Fe-Ni-Co alloy increased with the carbon content in both state of as-casted and solution treated. The effective distribution coefficient(Ke$\^$Ni/) of Ni was smaller than unity in alloy of not containing carbon, but is way larger than unity in alloy of containing carbon. It was considered that the homogeneity of Ni in primary austenite affected thermal expansion coefficient.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Study on Anomalous Codeposition Phenomenon of CoNi Magnetic Films

  • Yu, Yundan;Wei, Guoying;Ge, Hongliang;Jiang, Li;Sun, Lixia
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • CoNi alloy films prepared from electrolytes with various concentrations of cobalt ions were studied in the paper. Influences of different cobalt ions concentrations on electrochemistry processes, components, microstructures, surface morphologies and magnetic properties of CoNi films were investigated. It was found that CoNi film plating was a kind of anomalous codeposition process. The percentage of cobalt content in CoNi films was higher than that of in the electrolyte. Moreover, with the rise of cobalt ions concentrations, the percentage of cobalt content in the samples increased gradually. CoNi films possessed crystal structures with four stronger diffraction peaks. However, CoNi films prepared from bath with higher cobalt ions possessed hcp structures which contributed to dendrite structures resulting in the increase of coercivity.

Thermal Stability Improvement of Ni-Silicide using Ni-Co alloy for Nano-scale CMOSFET (나노급 CMOSFET을 위한 니켈-코발트 합금을 이용한 니켈-실리사이드의 열안정성 개선)

  • Park, Kee-Young;Jung, Soon-Yen;Han, In-Shik;Zhang, Ying-Ying;Zhong, Zhun;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • In this paper, the Ni-Co alloy was used for thermal stability estimation comparison with Ni structure. The proposed Ni/Ni-Co structure exhibited wider range of rapid thermal process windows, lower sheet resistance in spite of high temperature annealing up to $700^{\circ}C$ for 30 min, more uniform interface via FE-SEM analysis, NiSi phase peak. Therefore, The proposed Ni/Ni-Co structure is highly promising for highly thermal immune Ni-silicide for nano-scale MOSFET technology.

A Study on charge/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.228-231
    • /
    • 1996
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$ (mole ratio respectively) and heating at $850^{\circ}C$ for 5h. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure, but the more $LiCo_{1-x}Ni_{x}O_2$ involve NI, the more hexagonal structure is not well formed. In the result of charge/discharge test, charge/discharge characteristic of $LiCo_{1-x}Ni_{x}O_2$ is similar to that of $LiCoO_2$. Therefore, $LiCo_{1-x}Ni_{x}O_2$ is superior to $LiCoO_2$ for Li secondary battery

  • PDF

A First-principles Study on the Electronic Structures and Magnetism of Antiperovskite Ti0.96Co0.02Fe0.02O2 (페로브스카이트 구조를 가지는 Ti0.96Co0.02Fe0.02O2의 전자구조와 자성)

  • Song, Ki-Myung;Bialek, B.;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.85-88
    • /
    • 2008
  • We calculated the electronic structures of substituted cobalt nitrides, that is $FeCo_3N$ and $NiCo_3Ni$, by using the all electron fullpotential linearized augmented plane-wave (FLAPW) energy band method, and investigated the influence on the magnetic properties of $Co_4N$ due to the substitution of Co atom located at corner sites by iron and nickel atoms. We found that the magnetic moments of CoII atoms located at the face-center positions in these compounds are almost same to that of $Co_4N$. The magnetic moments of Fe and Ni atoms in $FeCo_3N$ and $NiCo_3Ni$ are 3.086 and $0.795\;{\mu}_B$, and they have the localized nature of magnetism.

The Giant Magnetoresistance Properties of CoFe/Cu/NiFe Pseudo Spin Valve (CoFe/Cu/NiFe Pseudo스핀밸브의 자기저항 특성)

  • Choi, W.J.;Hong, J.P.;Kim, T.S.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.212-217
    • /
    • 2002
  • The pseudo spin valve with a structure of Tl/CoFe(t $\AA$)/Cu(30 $\AA$)/NiFe(50 $\AA$)/Ta, showing giant magnetoresistance properties by utilizing coercivity difference between only two soft ferromagnetic layers were produced by d.c UHV magnetron sputtering system. In pseudo spin valve Ta/CoFe/Cu/NiFe/Ta, the magnetic and magnetoresistance properties with change of CoFe thickness were investigated. When the thickness of CoFe was 60 $\AA$, a typical MR curve of pseudo spin valve structure was obtained, showing MR ratio of 3.8 cio and the coercivity difference of 27.4 Oe with a sharp change of hard layer switching. When the CoFe thickness was varied from 20 to 100 $\AA$, coercivity difference between two layers was increased to 40 $\AA$. and decreased to 100 $\AA$ gradually. It is thought the change in coercivity of hard layer was due to the crystallinity and magnetostriction of thin CoFe layer. In order to improve the MR property in CoFe/Cu/NiFe trier layer structure, CoFe layer with change of 2-20 $\AA$ thick was inserted between Cu and NiFe. When the thickness of CoFe was 10 $\AA$, MR ratio was 6.7%, showing excellent MR property. This indicates 50 % higher than that of CoFe/Cu/NiFe pseudo spin valve.

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.