DOI QR코드

DOI QR Code

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil (Department of Metallurgical Engineering, Pukyong National University) ;
  • Pyo, Jae-Jung (Department of Metallurgical Engineering, Pukyong National University) ;
  • Ahn, Se-Ho (Department of Metallurgical Engineering, Pukyong National University) ;
  • Choi, Dong-Hyeon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Lee, Byeong-Woo (Department of Materials System Engineering, Pukyong National University) ;
  • Lee, Dong-Won (Titanium Department, Korean Institute of Materials Science(KIMS))
  • Received : 2018.08.16
  • Accepted : 2018.08.20
  • Published : 2018.08.28

Abstract

In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Keywords

References

  1. S. W. Lee and S. A. Choi: Ceramist, 13 (2010) 32.
  2. H. C. Jung, G. H. Kim, H. S. Hong and D. W. Kim: J. Korean Powder Metall. Inst., 17 (2010) 175. https://doi.org/10.4150/KPMI.2010.17.3.175
  3. H. K. Park: J. Korean Electrochem. Soc., 11 (2008) 197. https://doi.org/10.5229/JKES.2008.11.3.197
  4. H. S. Hong, H. C. Jung, G. H. Kim and Y. D. Ko: Trends in Metals & Materials Engineering, 24 (2011) 26.
  5. G. C. Shim: Trends in Metals & Materials Engineering, 24 (2011) 49.
  6. J. J. Lee and J. D. Chung: J. of Korean Inst. of Resources Recycling, 19 (2010) 51.
  7. B. Swain, J. K Jeong, M. S Kim, J. C. Lee and J. S Sohn: J. of Korean Inst. of Resources Recycling, 14 (2005) 28.
  8. C. K. Lee and D. H. Yang: J. Korean Ind. Eng. Chem., 12 (2001) 890.
  9. C. K. Lee and N. H. Kim : J. of Korean Inst. of Resources Recycling, 10 (2001) 9.
  10. C. K. Lee and T. H. Kim: J. of Korean Inst. of Resources Recycling, 9 (2000) 37.
  11. L. Li, J. Ge, R.J Chen, F. Wu, S. Chen and X. X Zhang: Waste Management, 30 (2010) 2615. https://doi.org/10.1016/j.wasman.2010.08.008
  12. Y. Yamaji, G. Dodbiba, S. Matsuo, K. Okaya, A. Shibayama and T. Fujita: Resource Processing, 58 (2011) 9. https://doi.org/10.4144/rpsj.58.9
  13. C. Liang, T. Xin-cun, Z. Yang, Q. Yi, Z. Min: The Chinese Journal of Nonferrous Metals, 21 (2011) 1192.
  14. M. Petranikova, A. Miskufova, T. Havlik, O. Petranikova and A. Pehkonen: Acta Metallugica Slovaca, 17 (2011) 106.
  15. E. M. Garcia, Hosane A, T. Matencio, R. Z. Domingues, J. A. F dos Santos and M. B. J. G de Freitas: J. Appl. Electrochem., 41 (2011) 1373. https://doi.org/10.1007/s10800-011-0339-3
  16. T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn and M. Rutz: J. Power Sources, 207 (2012) 173. https://doi.org/10.1016/j.jpowsour.2012.01.152
  17. S. K. Kim: The 2011 spring meeting and 36the conference, Korean Inst. of Resources Recycling, (2011) 84.