Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.175

Study on Anomalous Codeposition Phenomenon of CoNi Magnetic Films  

Yu, Yundan (College of Materials Science and Engineering, China Jiliang University)
Wei, Guoying (College of Materials Science and Engineering, China Jiliang University)
Ge, Hongliang (College of Materials Science and Engineering, China Jiliang University)
Jiang, Li (College of Materials Science and Engineering, China Jiliang University)
Sun, Lixia (College of Materials Science and Engineering, China Jiliang University)
Publication Information
Abstract
CoNi alloy films prepared from electrolytes with various concentrations of cobalt ions were studied in the paper. Influences of different cobalt ions concentrations on electrochemistry processes, components, microstructures, surface morphologies and magnetic properties of CoNi films were investigated. It was found that CoNi film plating was a kind of anomalous codeposition process. The percentage of cobalt content in CoNi films was higher than that of in the electrolyte. Moreover, with the rise of cobalt ions concentrations, the percentage of cobalt content in the samples increased gradually. CoNi films possessed crystal structures with four stronger diffraction peaks. However, CoNi films prepared from bath with higher cobalt ions possessed hcp structures which contributed to dendrite structures resulting in the increase of coercivity.
Keywords
CoNi films; anomalous codeposition; Coercivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Joseph and S. G. Singh, Mater. Lett. 52, 197 (2017).
2 R. Godbole and V. P. Godbole, Mat. Sci. Semicon. Proc. 63, 212 (2017).   DOI
3 A. A. Bagade, V. V. Ganbavle, and S. V. Mohite, J. Colloid. Interf. Sci. 497, 181 (2017).   DOI
4 M. S. E. Bana and S. S. Fouad, J. Alloys Compd. 705, 333 (2017).   DOI
5 K. Duschek, M. Uhlemann, H. Schlorb, and K. Nielsch, Electrochem. Commun. 72, 153 (2016).   DOI
6 E. Aubry and T. Liu, J. Magn. Mang. Mater. 422, 391 (2017).   DOI
7 W. H. Lu, D. B. Sun, and H. Y. Yu, J. Alloys Compd. 546, 229 (2013).   DOI
8 P. Zhong, J. Iron. Steel. Res. Int. 14, 292 (2007).   DOI
9 E. Aubry, T. Liu, A. Billard, A. Dekens, and F. Perry, J. Magn. Magn. Mater. 422, 391 (2017).   DOI
10 J. V. Arenas, R. H. Lara, and F. S. Sosa, Ref. Mod. Mater. Sci. Mater. Eng. 3, 86 (2017).
11 V. Solanki, O. I. Lebedev, and M. M. Seikh, J. Magn. Magn. Mater. 420, 39 (2016).   DOI
12 D. Nie, C. J. Xu, H. Y. Chen, and Y. J. Wang, Mater. Lett. 131, 306 (2014).   DOI
13 R. Y. Qin, X. J. Zhang, S. Q. Guo, and B. B. Sun, Surf. Coat. Technol. 360, 816 (2016).
14 Q. S. Chen, Z. Y. Zhou, and G. C. Guo, Electrochim. Acta. 113, 694 (2013).   DOI
15 J. V. Aenas, L. A. Garcia, and M. Pritzker, Electrochim. Acta. 65, 234 (2012).   DOI
16 Y. Li, Y. Tao, D. Ke, and Y. Ma, Appl. Surf. Sci. 357, 1714 (2015).   DOI
17 A. Dolati, M. Sababi, E. Nouri, and M. Ghorbani, Mater. Chem. Phys. 102, 118 (2007).   DOI
18 J. Y. Li, C. Ni, J. Y. Liu, and M. J. Jin, Mater. Chem. Phys. 148, 1202 (2014).   DOI
19 C. S. Liu, F. H. Su, and J. Z. Liang, Surf. Coat. Technol. 292, 37 (2016).   DOI
20 E. Gomez and E. Valles, Electroanal. Chem. 421, 157 (1997).   DOI
21 H. Yan, J. Downes, and P. J. Boden, J. Electrochem. Soc. 143, 1577 (1996).   DOI
22 L. Tian, J. Xu, and C. Qiang, Appl. Surf. Sci. 257, 4689 (2011).   DOI
23 C. K. Chung and W. T. Chang, Thin Solid Films 517, 4800 (2009).   DOI
24 K. M. Yin, J. H. Wei, J. R. Fu, B. N. Popov, and S. N. Popova, J. Appl. Electrochem. 25, 543 (1995).   DOI
25 J. Vaes, J. Fransaer, and J. P. Celis, J. Electrochem. Soc. 147, 3718 (2000).   DOI
26 M. Srivastava, V. E. Selvi, and K. S. Rajam, Surf. Coat. Technol. 201, 3051 (2006).   DOI
27 L. P. Wang, Y. Gao, Q. J. Xue, and T. Xu, Appl. Surf. Sci. 242, 326 (2005).   DOI
28 J. W. Sun, S. L. Wang, Z. W. Yan, and Y. H. Wen, Mater. Sci. Eng. 639, 456 (2015).   DOI