Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.4.296

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries  

Wang, Jei-Pil (Department of Metallurgical Engineering, Pukyong National University)
Pyo, Jae-Jung (Department of Metallurgical Engineering, Pukyong National University)
Ahn, Se-Ho (Department of Metallurgical Engineering, Pukyong National University)
Choi, Dong-Hyeon (Department of Metallurgical Engineering, Pukyong National University)
Lee, Byeong-Woo (Department of Materials System Engineering, Pukyong National University)
Lee, Dong-Won (Titanium Department, Korean Institute of Materials Science(KIMS))
Publication Information
Journal of Powder Materials / v.25, no.4, 2018 , pp. 296-301 More about this Journal
Abstract
In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.
Keywords
$NCM(LiNiCoMnO_2)$; Carbonation; $Li_2CO_3$; Water leaching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. W. Lee and S. A. Choi: Ceramist, 13 (2010) 32.
2 H. C. Jung, G. H. Kim, H. S. Hong and D. W. Kim: J. Korean Powder Metall. Inst., 17 (2010) 175.   DOI
3 H. K. Park: J. Korean Electrochem. Soc., 11 (2008) 197.   DOI
4 H. S. Hong, H. C. Jung, G. H. Kim and Y. D. Ko: Trends in Metals & Materials Engineering, 24 (2011) 26.
5 G. C. Shim: Trends in Metals & Materials Engineering, 24 (2011) 49.
6 J. J. Lee and J. D. Chung: J. of Korean Inst. of Resources Recycling, 19 (2010) 51.
7 B. Swain, J. K Jeong, M. S Kim, J. C. Lee and J. S Sohn: J. of Korean Inst. of Resources Recycling, 14 (2005) 28.
8 C. K. Lee and T. H. Kim: J. of Korean Inst. of Resources Recycling, 9 (2000) 37.
9 L. Li, J. Ge, R.J Chen, F. Wu, S. Chen and X. X Zhang: Waste Management, 30 (2010) 2615.   DOI
10 Y. Yamaji, G. Dodbiba, S. Matsuo, K. Okaya, A. Shibayama and T. Fujita: Resource Processing, 58 (2011) 9.   DOI
11 C. Liang, T. Xin-cun, Z. Yang, Q. Yi, Z. Min: The Chinese Journal of Nonferrous Metals, 21 (2011) 1192.
12 M. Petranikova, A. Miskufova, T. Havlik, O. Petranikova and A. Pehkonen: Acta Metallugica Slovaca, 17 (2011) 106.
13 E. M. Garcia, Hosane A, T. Matencio, R. Z. Domingues, J. A. F dos Santos and M. B. J. G de Freitas: J. Appl. Electrochem., 41 (2011) 1373.   DOI
14 T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn and M. Rutz: J. Power Sources, 207 (2012) 173.   DOI
15 S. K. Kim: The 2011 spring meeting and 36the conference, Korean Inst. of Resources Recycling, (2011) 84.
16 C. K. Lee and D. H. Yang: J. Korean Ind. Eng. Chem., 12 (2001) 890.
17 C. K. Lee and N. H. Kim : J. of Korean Inst. of Resources Recycling, 10 (2001) 9.