• Title/Summary/Keyword: Co-surfactant

Search Result 267, Processing Time 0.023 seconds

Stabilization of Nanoemulsion Using PEG-free Surfactant (PEG-free 계면활성제를 사용한 Nanoemulsion의 안정화)

  • Kim, Huiju;Jung, Taek Kyu;Kim, Ja Young;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.434-447
    • /
    • 2019
  • Polyethylene glycol (PEG) is widely used in cosmetics as a surfactant, detergent and emulsifier. During the manufacturing process, 1,4-dioxane, which is toxic to humans, can be produced as a by-product by dimerization of ethylene oxide. As consumers' interest in cosmetic ingredients has increased, the need for safe emulsion research without PEG ingredients in the personal care market has increased. With increasing consumer interest in cosmetic ingredients, the need for safer emulsion research without the PEG ingredient in the personal care market has increased. In this study, we aimed to develop and stabilize nanoemulsion formulation without PEG. Response Surface Methodology (RSM) was used to develop optimized nanoemulsion formulations. Surfactant content (2~4%), oil content (4~8%) and polyol content (12~24%) were set as independent variables as a result of preliminary experiments for determining independent variables and ranges. The particle size, zeta potential, turbidity, and polydispersity index of the formulation were measured as response variables. As a result of measurement of the prepared nanoemulsion by FIB (Focused ion beam), spherical particles were found to have a size distribution of 100 to 200 nm. The stability of each formulation was evaluated for 30 days at each temperature ($4^{\circ}C$, $25^{\circ}C$, and $45^{\circ}C$). The optimal formulation considering the optimum particle size, turbidity, polydispersity index and zeta potential was found to be surfactant (2%), oil (8%) and polyol (24%).

Study on Optimization and Skin Permeation of PIT Nanoemulsion Containing α-Bisabolol (α-Bisabolol을 함유한 PIT Nanoemulsion의 최적화 및 피부흡수연구)

  • Kim, HuiJu;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1738-1751
    • /
    • 2020
  • The skin is divided into three parts: the epidermis, the dermis, and the subcutaneous fat, and the stratum corneum, which is located at the top of the epidermis, acts as a barrier that prevents drug delivery. Nanoemulsions are known to be effective in transdermal delivery of drugs through intercellular lipids because of their unique small particle size. In this study, phase inversion temperature (PIT) nanoemulsion containing α-bisabolol was optimized using response surface methodology (RSM) for effective skin absorption of α-bisabolol. As a preliminary experiment, the 25-2 fractional factorial design method and the 23 full factorial design method were performed. Box-Behnken design was performed based on the results of the factorial design method. The content of surfactant (6.3~12.6%), co-surfactant (5.2~7.8%) and α-bisabolol (0.5~5.0%) were used as factors, and the dependent variable was the particle size of the nanoemulsion. PIT nanoemulsion optimization was performed according to the RSM results, and as a result, the optimal nanoemulsion formulation conditions were predicted to be 10.4% surfactant content, 6.3% co-surfactant content, and 5.0% α-bisabolol content. As a result of the skin absorption test, the final skin absorption rate of the PIT nanoemulsion was 35.11±1.01%, and the final skin absorption rate of the general emulsion as a control was 28.25±1.69%, confirming that the skin absorption rate of the PIT nanoemulsion was better.

Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization (무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조)

  • Lee, Ki-Chang
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2012
  • Narrowly dispersed poly(BMA-co-MMA) and PBMA latices (PSD : 1.002~1.008) were synthesized successfully by surfactant-free emulsion polymerization with 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA) and $K_2S_2O_8$ (KPS). The number average particle diameter and the number average molecule weight were found to be 160~494 nm and (1.25~7.55) ${\times}10^4$, respectively. The influences of BMA/MMA ratio, monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the polymerization rates and on the particle size and molecular weight were studied. The rate of polymerization increased with increasing MMA concentration in BMA/MMA weight ratio. The particle diameter as well as the polymer molecular weight could be controlled easily by controlling the BMA/MMA weight ratio, monomer concentration, AIBA and KPS concentration, and polymerization temperature.

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Preparation of nanoporous alumina using aluminum chloride via precipitation templating method for CO adsorbent

  • Yeom, Changju;Selvaraj, Rengaraj;Kim, Younghun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.132-139
    • /
    • 2018
  • A cost-effective preparation method is proposed to prepare nanoporous alumina (NA) using aluminum chloride as a precursor with a lower cost than aluminum butoxide. In addition, the surfactant template was replaced with magnesium stearate, which has a lower unit cost in stearate acid. The adsorption isotherm test for the CO gas was carried out to compare the adsorption performance of the NA adsorbents prepared using post-hydrolysis (NA) and cost-effective precipitation (C-NA). In addition, C-NA exhibited a similar uptake capacity as NA, and the maximum uptake capacity of Pd/C-NA increased 1.3 times via Pd nanodots loading.

Effect of Cosurfactant on Microemulsion Formation and Cleaning Efficiency in Systems Containing Alkyl Ethoxylates Nonionic Surfactant, D-Limonene and Water (보조계면활성제 첨가가 Alkyl Ethoxylates계 비이온 계면활성제, D-limonene, 물로 이루어진 시스템에서의 마이크로에멀젼 형성 및 세정력에 미치는 효과)

  • Lee, Jong Gi;Bae, Sang Soo;Cho, In Sik;Park, So Jin;Park, Byeong Deog;Park, Sang Kwon;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.664-671
    • /
    • 2005
  • In this study, the effect of sosurfactant on microemulsion phase behavior was investigated in ternary systems containing alkyl ethoxylates nonionic surfactant, water and d-limonene. The addition of a cosurfactant produced a microemulsion phase over a wide range of temperature and promoted formation of a microemulsion phase at lower temperatures. In particular, small amounts of n-propanol, as a cosurfactant, were found to be the most effective in extending a microemulsion phase region over a wide range of temperature. Temperature sensitivity of a nonionic surfactant system was effectively relieved by addition of the anionic surfactant sodium dodecyl sulfate. And the formation of one phase microemulsion was not affected by pH, hardness concentration and addition of an antioxidation agent. The cleaner candidates were determined from microemulsion phase behavior study, and their cleaning efficiency was tested using a dipping method. All the cleaner candidates selected during this study showed excellent removal efficiency for abietic acid over a temperature range from 30 to $40^{\circ}C$ presumably due to a decrease in interfacial tension.

Effect of Solvents on Phase Behavior and Flux Removal Efficiency in Alkyl Ethoxylates Nonionic Surfactant Based Cleaners (Alkyl Ethoxylates계 비이온 계면활성제를 주체로 한 세정제에서 용제에 따른 상거동과 플럭스 제거 효능)

  • Lee, Jong-Gi;Bae, Sang-Soo;Cho, In-Sik;Park, So-Jin;Park, Byeong-Deog;Park, Sang-Kwon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.677-683
    • /
    • 2005
  • In this work, the effect of additives such as solvent, sodium dodecyl sulfate and NaCl on microemulsion phase behavior and flux removal efficiency in systems containing commercial alkyl ethoxylates nonionic surfactant was investigated. The addition of a n-hydrocarbon as a solvent produced on O/W (Oil/Water) microemulsion phase over a wider range of temperature and cosurfactant to surfactant ratios. Especially, the addition of n-hexadecane to the surfactant system, which was the most hydrophobic solvent among the solvents used in this study, produced a microemulsion phase over a wide range of temperatures and promoted formation of a microemulsion phase at lower temperatures. The candidate for cleaner samples, prepared from phase behavior experiments, showed excellent removal efficiency for abietic acid at $40^{\circ}C$. These data suggested the potential applicability of hydrocarbons to actual cleaner formulations.

Fundamental Study for Feasibility on Soil Flushing for TPHs-Contaminated Soil Treatment (유류오염토양 정화를 위한 토양세정기술의 적용성 기초연구)

  • Kang, Hui-Cheon;Kim, Joung-Dae;Han, Byeong-Gi;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.740-747
    • /
    • 2015
  • This research was performed to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation. It was conducted in batch test as fundamental research for in situ soil flushing. The 30% of initial TPH concentration was removed by shaking only in batch test. The removal efficiency of TPH in case of groundwater as surfactant dilution solution was approximate 2~6% lower than that of distilled water. Mixing ratio of soil to surfactant solution did not practically effect on the TPH removal efficiency. In the experiment of using single or mixed surfactant solution with 0.1~4.0 wt%, Tween-80, SWA-1503, SWA-1503+SDS showed averagely over 80%. It was determined that the optimum surfactant concentration was 0.1 wt% because there was no significant difference between concentrations of 0.1~4.0 wt%.

Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process (부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가)

  • Yang, Jong-Won;Choi, Yong-Ho;Chae, In-Seok;Kim, Mi-Sug;Jeong, Yong-Hoon;Kim, Tae-Geum;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.