DOI QR코드

DOI QR Code

Preparation of nanoporous alumina using aluminum chloride via precipitation templating method for CO adsorbent

  • Yeom, Changju (Department of Chemical Engineering, Kwangwoon University) ;
  • Selvaraj, Rengaraj (Department of Chemistry, College of Science, Sultan Qaboos University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2017.12.08
  • Accepted : 2018.06.24
  • Published : 2018.11.25

Abstract

A cost-effective preparation method is proposed to prepare nanoporous alumina (NA) using aluminum chloride as a precursor with a lower cost than aluminum butoxide. In addition, the surfactant template was replaced with magnesium stearate, which has a lower unit cost in stearate acid. The adsorption isotherm test for the CO gas was carried out to compare the adsorption performance of the NA adsorbents prepared using post-hydrolysis (NA) and cost-effective precipitation (C-NA). In addition, C-NA exhibited a similar uptake capacity as NA, and the maximum uptake capacity of Pd/C-NA increased 1.3 times via Pd nanodots loading.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 244-245 (244) (2013) 444. https://doi.org/10.1016/j.jhazmat.2012.11.011
  2. N.S. Bobbitt, M.L. Mendonca, A.J. Howarth, T. Islamoglu, J.T. Hupp, O.K. Fahra, Chem. Soc. Rev. 46 (2017) 3357. https://doi.org/10.1039/C7CS00108H
  3. B. Pawelec, R.M. Navarro, J.M. Campos-Martin, J.L.G. Fierro, Catal. Sci. Technol.1 (2011) 23. https://doi.org/10.1039/c0cy00049c
  4. C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Sep. Purif. Technol. 52 (2007) 403. https://doi.org/10.1016/j.seppur.2006.06.009
  5. E. Haque, J.W. Jun, S.N. Talapaneni, A. Vinu, S.H. Jhung, J. Mater. Chem. 20 (2010) 10801. https://doi.org/10.1039/c0jm02974b
  6. S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796. https://doi.org/10.1002/cssc.200900036
  7. S. Martens, R. Ortmann, F.J. Brieler, C. Pasel, Y.J. Lee, D. Bathen, M. Froba, Z. Anorg. Allg. Chem. 640 (2014) 632. https://doi.org/10.1002/zaac.201300519
  8. T.G. Glover, G.W. Peterson, B.J. Schindler, D. Britt, O. Yaghi, Chem. Eng. Sci. 66 (2011) 163. https://doi.org/10.1016/j.ces.2010.10.002
  9. S. Rengaraj, Y. Kim, J.-W. Yeon, W.-H. Kim, Ind. Eng. Chem. Res. 46 (2007) 2834. https://doi.org/10.1021/ie060994n
  10. A. Hanif, S. Dasgupta, A. Nanoti, Chem. Eng. J. 15 (2014) 703.
  11. W.S. Chiang, E. Fratini, P. Baglioni, J.H. Chen, Y. Liu, Langmuir 6 (2016) 8849.
  12. F. Salles, A. Ghoufi, G. Maurin, R.G. Bell, C. Mellot-Draznieks, G. Ferey, Angew. Chem. Int. Ed. 47 (2008) 8487. https://doi.org/10.1002/anie.200803067
  13. Y. Belmabkhout, G.D. Weireld, A. Sayari, Langmuir 25 (2009) 13275. https://doi.org/10.1021/la903238y
  14. C. Zamani, X. Illa, S. Abdollahzadeh-Ghom, J.R. Morante, A.R. Rodriguez, Nanoscale Res. Lett. 4 (2009) 1303. https://doi.org/10.1007/s11671-009-9396-5
  15. C.T. Hung, H. Bai, Chem. Eng. Sci. 63 (2008) 1997. https://doi.org/10.1016/j.ces.2008.01.002
  16. J.A. Thote, R.V. Chatti, K.S. Iyer, V. Kumar, A.N. Valechha, N.K. Labhsetwar, R.B. Biniwale, M.K.N. Yenkie, S.S. Rayalu, J. Environ. Sci. 24 (2012) 1979. https://doi.org/10.1016/S1001-0742(11)61022-X
  17. A. Walcarius, L. Mercier, J. Mater. Chem. 20 (2010) 4478. https://doi.org/10.1039/b924316j
  18. C.M. Hung, J. Hazard. Mater. 150 (2008) 53. https://doi.org/10.1016/j.jhazmat.2007.04.044
  19. C. Chen, W.-S. Ahn, Chem. Eng. J. 166 (2011) 646. https://doi.org/10.1016/j.cej.2010.11.038
  20. A.F. Nguefack, S. Popa, Phys. Chem. Chem. Phys. 5 (2003) 4279. https://doi.org/10.1039/B306170A
  21. D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Lett. 42 (2000) 38. https://doi.org/10.1016/S0167-577X(99)00156-1
  22. O. Rahmanpour, A. Shariati, M. Reza, K. Nikou, Int. J. Chem. Eng. Appl. 3 (2012) 2.
  23. A. Sharma, O. Modi, G. Gupta, Adv. Appl. Sci. Res. 3 (2012) 3819.
  24. Adv. Appl. Sci. Res. 3 (2012) 3819.
  25. X. Wang, G. Lu, Y. Guo, Y. Wang, Y. Guo, Mater. Chem. Phys. 90 (2005) 225. https://doi.org/10.1016/j.matchemphys.2004.11.012
  26. Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Environ. Sci. Technol. 38 (2004) 924. https://doi.org/10.1021/es0346431
  27. Y. Kim, B. Lee, J. Yi, Korean J. Chem. Eng. 24 (2010) 679.
  28. C. Kim, Y. Kim, P. Kim, J. Yi, Korean J. Chem. Eng. 20 (2003) 1142. https://doi.org/10.1007/BF02706951
  29. M.I. Muglali, J. Liu, A. Bashir, D. Borissov, M. Xu, Y. Wang, C. Woll, M. Rohwerder, Phys. Chem. Chem. Phys. 14 (2012) 4703. https://doi.org/10.1039/c2cp40072c
  30. K. Fottinger, R. Schlogl, G. Rupprechter, Chem. Commun. 3 (2008) 320.
  31. X. Zhao, A.M.Z. Slawin, D.W. Aldous, N.F. Cessford, T. Du, R. Gill, K.M. Thomas, J. M. Griffin, S.E. Ashbrook, R.E. Morris, Nat. Chem. 3 (2011) 304. https://doi.org/10.1038/nchem.1003
  32. S. Liu, J. Colloid Interface Sci. 450 (2015) 224. https://doi.org/10.1016/j.jcis.2015.03.013
  33. M. Bastos-Neto, A. Moeller, R. Staudt, J. Bohm, R. Glaser, Sep. Purif. Technol. 77 (2011) 251. https://doi.org/10.1016/j.seppur.2010.12.015
  34. S. Bordiga, E.E. Platero, C.O. Arean, C. Lamberti, C. Inorganica, C. Fisica, U. Torino, P. Giuria, D. Ou, F. De Ciencias, D. Mallorca, I. Sezione, V. Pietro Giuria, J. Catal. 185 (1992) 179.
  35. H. Tiznado, S. Fuentes, F. Zaera, Langmuir 20 (2004) 10490. https://doi.org/10.1021/la049606h
  36. D. Tessier, A. Rakai, F. Bozon-Verduraz, J. Chem. Soc. Faraday Trans. 88 (1992) 741. https://doi.org/10.1039/FT9928800741

Cited by

  1. New Insights into SnO2/Al2O3, Ni/Al2O3, and SnO2/Ni/Al2O3 Composite Films for CO Adsorption: Building a Bridge b vol.124, pp.6, 2020, https://doi.org/10.1021/acs.jpcc.9b11148
  2. Investigation of carbon monoxide gas adsorption on the Al2O3/Pd(NO3)2/zeolite composite film vol.14, pp.1, 2018, https://doi.org/10.1007/s40094-019-00360-6
  3. Kinetics study of CO molecules adsorption on Al2O3/Zeolite composite films prepared by roll-coating method vol.37, pp.3, 2018, https://doi.org/10.1080/02670844.2020.1768628