DOI QR코드

DOI QR Code

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek (Department of Advanced Materials and Engineering, Kumoh National Institute of Technology) ;
  • Allabergenov, Bunyod (Department of Advanced Materials and Engineering, Kumoh National Institute of Technology) ;
  • Abidov, Amir (Department of Advanced Materials and Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Soon-Wook (Department of Advanced Materials and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Sungjin (Department of Advanced Materials and Engineering, Kumoh National Institute of Technology)
  • Received : 2013.02.13
  • Accepted : 2013.06.18
  • Published : 2013.06.28

Abstract

The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Keywords

References

  1. Magnetic Nanoparticles Edited by Sergey P. Gubin. WILEY-VCH Verlang GmbH & KGaA, Weinheim, ISBN: 978-3-527-40790-3 (2009) 466.
  2. Stepanka Klimkova, Miroslav Cernik, Lenka Lacinova, Jan Filip and Dalibor Jancik: Chemosphere, 82 (2011) 1178. https://doi.org/10.1016/j.chemosphere.2010.11.075
  3. Alejandro Simon de Dios and Marta Elena Díaz-García: Anal. Chim. Acta., 666 (2010) 1. https://doi.org/10.1016/j.aca.2010.03.038
  4. A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi et al.: J. Am. Chem. Soc, 125 (2003) 1684. https://doi.org/10.1021/ja021223n
  5. S. P. Gubin, Yu A. Koksharov, G. B. Khomutov and G. Yu Yurkov: Russian Chemical Reviews, 74(6) (2005) 489. https://doi.org/10.1070/RC2005v074n06ABEH000897
  6. Y. J. Song, P. Y. Jin and T. Zhang, Mater. Lett., 64 (2010) 1789. https://doi.org/10.1016/j.matlet.2010.05.025
  7. Miha Drofenik, Gregor Ferk, Matjaz Kristl and Darko Makovec: Mater. Lett., 65 (2011) 439. https://doi.org/10.1016/j.matlet.2010.11.009
  8. Daniel Amara, Israel Felner, Israel Nowik and Shlomo Margel: Colloids and Surfaces A: Physicochem. Eng. Aspects, 339 (2009) 106. https://doi.org/10.1016/j.colsurfa.2009.02.003
  9. P. C. Morais, R. L. Santos, A. C. M. Pimenta, R. B. Azevedo and E. C. D. Lima: Thin Solid Films, 515 (2006) 266. https://doi.org/10.1016/j.tsf.2005.12.079
  10. J. S. Suh, J. Y. Lee, Y. S. Choi, S. J. Lee, C. P. Chung and Y. J. Park: Biochemical and Biophysical Research Communications, 379 (2009) 669. https://doi.org/10.1016/j.bbrc.2008.12.041
  11. Yi, An, Tielong, Li, Zhaohui, Jin, Meiying, Dong, Hongcai, Xia, and Xue, Wang: Bioresour. Technol., 101 (2010) 9825. https://doi.org/10.1016/j.biortech.2010.07.110
  12. M. J. Bonder, Y. Zhanga, K. L. Kiickb and V. Papaefthymiouc, G. C. Hadjipanayisa J. Magn. Magn. Mater., 311 (2007) 658. https://doi.org/10.1016/j.jmmm.2006.08.045
  13. Di, Li, Deli Jiang, Min Chen, Jimin Xie, Yinyin Wu, Shengchun Dang and Jianxin Zhang: Mater. Lett., 64 (2010) 2462. https://doi.org/10.1016/j.matlet.2010.08.025
  14. Liying Zhang, YafeiZhang: Fabrication and magnetic properties of $Fe_3O_4$ nanowire arrays in different diameters. J. Magn. Magn. Mater., 321 (2009) L15. https://doi.org/10.1016/j.jmmm.2008.09.036
  15. N. Wang, Y. Cai, R. Q. Zhang: Growth of nanowires. Mater. Sci. Eng. R, 60 (2008) 1. https://doi.org/10.1016/j.mser.2008.01.001
  16. Qin Han, Zhenghui Liu and Yingying Xu et al: Growth and Properties of Single-Crystalline g-$Fe_2O_3$ Nanowires J. Phys. Chem. C, 111 (2007), 5034. https://doi.org/10.1021/jp067837m
  17. Q. Han, H. Zhang et al.: Defects and growing mechanisms of a-TEX>$Fe_2O_3$ nanowires. Chem. Phys. Lett., 431 (2006) 100. https://doi.org/10.1016/j.cplett.2006.09.027
  18. H.-W. Wang et al.: J. Magn. Magn. Mater., 310 (2007) 2425. https://doi.org/10.1016/j.jmmm.2006.10.814
  19. Ning Du, Yanfang Xu and Hui Zhang: Nanoscale Res Lett., 5 (2010) 1295. https://doi.org/10.1007/s11671-010-9641-y
  20. Yong Ding, Jenny Ruth Morber and Robert L. Snyder: Adv. Funct. Mater., 17, (2007), 1172. https://doi.org/10.1002/adfm.200601024
  21. R. Massart and S. Neveu: J. Magn. Magn. Mater., 149 (1995) 6. https://doi.org/10.1016/0304-8853(95)00317-7
  22. Le Thi Mai Hoa, Tran Thi Dung, Tran Mau Danh, Nguyen Huu Duc and Dang Mau Chien: J. Physics: Conference Series (Workshop on Advanced Materials Science and Nanotechnology (AMSN08), 187 (2009), 012.
  23. Cullen T. Vogelson and Andrew R. Barron: J. Non-Crystalline Solids, 290 (2001) 216. https://doi.org/10.1016/S0022-3093(01)00643-3
  24. Tran Trung, Won-Jei Cho and C.-S. Ha: Mater. Lett., 57 (2003) 2746. https://doi.org/10.1016/S0167-577X(02)01369-1