• Title/Summary/Keyword: Co-dopant

Search Result 148, Processing Time 0.04 seconds

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMN-PNN-PZT Ceramics according to the addition of dopant (불순물 첨가에 따른 저온소결 PMN-PNN-PZT 세라믹스의 압전 및 유전특성)

  • Lee, Sang-Ho;Lee, Chang-Bae;Jeong, Gwang-Hyeon;Yoo, Joo-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.33-34
    • /
    • 2005
  • In this study, in odor to develop low temperature sintering multilayer piezoelectric actuator and ultrasonic vibrator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids and their piezoelectric and dielectric characteristics were investigated according to the addition of dopant CuO and $Fe_2O_3$, respectively. The CuO added PMN-PNN-PZT ceramics improved mechanical quality factor Qm due to the acceptor doping effect. And also, $Fe_2O_3$ reacted as softner in this composition system in addition to the increase of grain size and sinterability. Taking into consideration electromechanical coupling factor kp of 0.62, dielectric constant $\varepsilon_r$, of 1275, Piezoelectric $d_{33}$ constant of 377[pC/N] and mechanical quality factor Qm of 975, it was concluded that the ceramics with the $Fe_2O_3$, added composition sintered at 900[$^{\circ}C$] were best for the multilayer piezoelectric actuator and ultrasonic vibrator application.

  • PDF

Thermo-Recording for The Composite System of (Disk-Like Molecules and Liquid Crystals)

  • Jeong, Hwan-Kyeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.245-249
    • /
    • 2002
  • A (disk-like liquid crystal (DLC) monomer/liquid crystals(LCs)/chiral dopant/dichroic dye) composite was irradiated with ultraviolet (UV) light. The (DLC network/LCs/chiral dopant/dichroic dye) was formed in the homeotropically oriented smectic A(SA) phase by the surface orientation treatment and the electric field. A focal-conic texture exhibiting strong light scattering appeared in the heat-induced chiral nematic phase(N${\ast}$) of the composite upon heating. Thermo-recording in the composite system has been realized by using a He-Ne laser. The laser irradiation was induced the phase transitions from SA phase to chiral nematic(N${\ast}$) phase in the composite system.

A Consideration on Segregation Process of Dopant at WC/Co and WC/WC Interfaces in VC Doped WC-Co Submicro-grained Hardmetal

  • Kawakami, Masaru;Terada, Osamu;Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.334-335
    • /
    • 2006
  • WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of $0.5\;{\mu}m$ was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm $(0.1\;{\mu}m)$.

  • PDF

C-V Characteristics of Cobalt Polycide Gate formed by the SADS(Silicide As Diffusion Source) Method (SADS(Siliide As Diffusion Source)법으로 형성한 코발트 폴리사이트 게이트의 C-V특성)

  • 정연실;배규식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.557-562
    • /
    • 2000
  • 160nm thick amorphous Si and polycrystalline Si were each deposited on to 10nm thick SiO$_2$, Co monolayer and Co/Ti bilayer were sequentially evaporated to form Co-polycide. Then MOS capacitors were fabricated by BF$_2$ ion-implantation. The characteristics of the fabricated capacitor samples depending upon the drive-in annel conductions were measured to study the effects of thermal stability of CoSi$_2$and dopant redistribution on electrical properties of Co-polycide gates. Results for capacitors using Co/Ti bilayer and drive-in annealed at 80$0^{\circ}C$ for 20~40sec. showed excellent C-V characteristics of gate electrode.

  • PDF

Redistribution of Dopant by Silicidation Treatment in Co/Metal/Si (Co/metal/Si 이중층 구조의 실리사이드화 열처리에 따른 dopant의 재분포)

  • Lee, Jong-Mu;Gwon, Yeong-Jae;Lee, Su-Cheon;Gang, Ho-Gyu;Bae, Dae-Rok;Sin, Gwang-Su;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.189-194
    • /
    • 1998
  • The redistribution behavior of boron during Co silicidation annealing in the Co/metal/Si system was investigated using SIMS. Ti, Nb and Hf films were used as epitaxy promoting metal layers. After annealing treatment the boron peak height was about 1 order lowered in Co/Ti/Si and Co/Nb/Si systems but the relative peak position from the surface did not change. The distribution of boron was very similar to those of Ti and Nb, because of the strong affinities of boron with them. Also, the position of the main boron peak in the Co/Hf/Si system was almost the same as that of Hf, but the distribution feature of the Co/Hf/Si system somewhat differed from those of Co/Ti/Si and Co/Nb/Si systems. This implies that the affinity between B and Hf is weaker than those of B-Ti and B-Nb. Boron tends to be depleted at the silicidelsi interface while it tends to be piled-up at the Co-metal/Co silicide interface during silicidation annealing.

  • PDF

Emission Properties of White Organic Light-Emitting Diodes with Blue Emitting Layer (청색 발광층에 의한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.451-456
    • /
    • 2013
  • To study emission properties of white phosphorescent organic light emitting devices (PHOLEDs), we fabricated white PHOLEDs of ITO(150 nm) / NPB(30 nm) / TcTa(10 nm) / mCP(7.5 nm) / light-emitting layer(25 nm) / UGH3(5 nm) / Bphen(50 nm) / LiF(0.5 nm) / Al(200 nm) structure. The total thickness of light-emitting layer with co-doping and blue-doping/co-doping using a host-dopant system was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir$(acac) in UGH3 as host, respectively. The OLED characteristics were changed with position and thickness of blue doping layer and co-doping layer as light-emitting layer and the best performance seemed in structure of blue-doping(5 nm)/co-doping(20 nm) layer. The white PHOLEDs showed the maximum current density of $34.5mA/cm^2$, maximum brightness of $5,731cd/m^2$, maximum current efficiency of 34.8 cd/A, maximum power efficiency of 21.6 lm/W, maximum quantum efficiency of 15.6%, and a Commission International de L'Eclairage (CIE) coordinate of (0.367, 0.436) at $1,000cd/m^2$.

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

Coulometric Titration Study on the Nonstoichiometry in Copper Doped Cobaltous Oxide ((${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O (전하적정법에 의한 (${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O의 산소 부정비량 측정)

  • ;Michael Schroeder;Manfred Martin
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.799-804
    • /
    • 2000
  • Coulometric titration experiments have been done for copper doped cobaltous oxide (Co1-xCux)1-$\delta$ O with various dopant concentrations. We present the obtained experimental data and compare our results to those of previous thermogravimetric investigation. The experimental data are fitted by theoretical calculations based on various defect models. For this modeling, we considered different types fo major defects like copper in substitutional and interstitial lattice sites as well as copper vacancy. We also introduced the copper evaporation effect during titration experiment into our consideration.

  • PDF