• Title/Summary/Keyword: Closed Loop Feedback

Search Result 509, Processing Time 0.029 seconds

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

Output Feedback Stabilization using Integral Sliding Mode Control (적분 슬라이딩 모드 제어기를 이용한 출력 궤환 안정화)

  • Oh, Seung-Rohk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.142-147
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

System identification using the feedback loop (궤환 제어를 이용한 시스템 규명)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.409-412
    • /
    • 2001
  • Identification of systems operating in closed loop has long been of prime interest in industrial applications. The fundamental problem with closed-loop data is the correlation between the unmeasurable noise and the input. This is the reason why several methods that work in open loop fail when applied to closed-loop data. The prediction error based approaches to the closed-loop system are divided to direct method and indirect method. Both of direct and indirect methods are known to be applied to the closed-loop data without critical modification. But the direct method induces the bias error in the experimental frequency response function and this bias error may deteriorates the parameter estimation performance

  • PDF

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

A controller design method based on the Hessenberg form

  • Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1123-1126
    • /
    • 1990
  • A new controller design algorithm based on the Hessenberg form for linear control systems has een proposed. The controller is composed of the dynamic compensator and the state feedback (dynamic state feedback). The algorithm gives a simple way to assign the eigenstructure (eigenvalues and eigenvectors) of the closed loop system and it also provides a method to assign the frequency shapes near the corner frequencies of the closed loop transfer function matrix. Because of this property, the algorithm is called the independent frequency shape control (IFSC) method.

  • PDF

Design of Discrete-Mode CLF-based SM-MF Controller for Power System Stabilizer : Part 2 (전력계통안정기를 위한 이산-모드 폐루우프 피이드백에 기준한 SM-MF 제어기 설계 : Part2)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1165-1167
    • /
    • 1997
  • In this paper, the continuous sliding mode-model following(SM-MF) power system stabilizer(PSS) including closed-loop feedback(CLF) is extended to discrete-time sliding mode-model following(DSM-MF) PSS including CLF.

  • PDF

Design of Multimachine Power System Stabilizer using CLF-based SM-MF Controller : Part 3 (폐-루우프 피이드백에 기준한 SM-MF 제어기를 이용한 다기 전력계통안정기 설계 : Part3)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1168-1170
    • /
    • 1997
  • In this paper, the sliding mode-model following(SM-MF) power system stabilizer(PSS) including closed-loop feedback(CLF) for single machine system is extended to multimachine system. Simulation results show that the SM-MF multimachine stabilizer is able to achieve asymptotic tracking error between the reference model state and the controlled plant state at different initial conditions.

  • PDF

Design of Full-Order Observer-based SM-MF Controller including CLF for Power System Stabilizer : Part 4 (전력계통안정기를 위한 폐-루우프 피이드백을 가진 전-차수 관측기에 기준한 SM-MF 제어기 설계 : Part4)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1171-1173
    • /
    • 1997
  • This paper presents the sliding mode observer-model following(SMO-MF) power system stabilizer(PSS) for unmeasurable plant state variables. This SMO-MF PSS can be obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the linear foil-order observer(LFOO).

  • PDF

Design of Multimachine Stabilizer using Full-Order Observer-based SM-MF Controller including CLF : Part 5 (폐-루우프 피이드백을 가진 전-차수 관측기에 기준한 SM-MF 제어기를 이용한 다기 안정기 설계 : Part5)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1174-1176
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) including closed-loop feedback(CLF) for single machine system is extended to multimachine system.

  • PDF