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Abstract

A new controller design algorithm based on the Hessenberg form
for linear control systems has been proposed. The controller is
composed of the dynamic compensator and the state feedback (dy-
namic state feedback). The algorithm gives a simple way to assign
the eigenstructure (eigenvalues and eigenvectors) of the closed loop
system and it also provides a method to assign the frequency shapes
near the corner frequencies of the closed loop transfer function ma-
trix. Because of this property, the algorithm is called the indepen-
dent frequency shape control (IFSC) method.

1. Introduction
The Hessenberg form of a linear control system has been stud-
ied by several authors. The controllable llessenberg form and the
observable Hessenberg form have been discussed in (1], and an al-
gorithm to get the coordination transformation has been derived.
In (2], the Iessenberg form has been studied in connection with the
problem of making the reduced order model. Besides these studies,
in 3], we have generalized the Hessenberg form to a class of nonlin-
ear control systems and shown that the nonlinear Hessenberg form
can be successfully used to design the stabilizing controller for the
nonlincar systems. There we have introduced the concept of the
virtual decomposition which is almost equivalent to the decomposi-
tion of the system to the Iessenberg form. This concept has played
an essential role in the derivation of the stabilizing controller for
nonlincar systems. Noting that the Hessenberg form provides a
classification of the states by the relative order, it has been ex-
pected that there is a design algorithm based on the Hessenberg
form which can use the information of the frequency domain ef-
fectively for linear control systems. In this paper, a new design
algorithm which gives a simple way to assign the cigenvalues and
eigenvectors to the closed loop system by using the dynamic com-
pensator and the state feedback based on the concept of the virtual
decomposition is proposed, and it is shown that the algorithm can
also assign the frequency shapes near the corner frequencics of the

closed loop transfer function matrix independently. Because of this
property, the algorithm will be called the independent frequency
shape control (IFSC) method.

2. Hessenberg Form
Here we will give an algorithm to get a controllable Hessenberg
form based on the concepts of virtual inputs and the virtual de-
composition which are essential for the proposed controller design
algorithm.
Let us consider a linear controllable system (C, A, B),

t=Az+ Bu )

y=Cr 2)
where z(1) € R" is the n dimensional state vector and u(t} € R",

y(t) € R™ are the r dimensional input vector and the m dimen-
sional output vector respectively.
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Without loss of generality, we can assume rank(B) = r. Hence,
there exists a coordinate transformation 77 which satisfies,

78 = [ o } ®
where det(B;) # 0.
By this transformation, the system is decomposed as,
# = Ang + Aiga+ Biu (1)
Iy = A g+ Apis (5)

where,

T = [ fl } =Tz
Z2

The influence matrix B, of the decomposed subsystem (4) is non-
singular and hence the problem of assigning the eigenstructure
(eigenvalues and cigenvectors) can be solved straightforwards. We
will calt such a system a full-controlled system. In general, a quan-
tity 7z = ¢ 1) + ...+ ¢nz, is said to have relative degree k for
the system (1), if k is the minimum integer satisfying,

¢TAF-I1B=0 ¢TA*B#O.

According to this terminology, we can say that each element of the
vector #; has the relative degree 1 for the system (1).

On the other hand, if we regard the Z, as the input vector to the
subsystem (5), we will get another control system,

Za = ApZa + Anus

(6)

where u; = #; will be called a virtual input. It is well known that
if (A, B) is a controllable pair, then (Az22,Az) is also a control-
lable pair. Hence if the system (6) is not full-controlled, we can
decompose it into one full-controlled system and another control-
lable system by applying an appropriate coordinate transformation
Ts.

For the brevity of the expression, let us omit the bars over each
variables and constants (i,,/in, etc) in the sequel.

By repeating these procedures, finally we will get a set of full-

controlied subsystems, S;, i = 1,...,¢, each of which has a virtual

input u;.
2= Auzi + AiipiTip + o F AT+ Aoy i=1,2,..9
(O]
where,
w=2zi.;, i=12,....9 (8)
and
To=1u (real input).

Note that from the definition, each element of the substate vector
z; of i-th subsystem S; has relative degree i. We will call the de-
composition (7) the virtual decomposition. If the relation (8) is
substituted into the equations (7), the following controllable Hes-
senberg form is obtained.



i= Az + Bu (9)

where,
Al Az .. oo Ay B
A1 A2z .. oo Az 01
A= 0 Az Ass Asq B=1 . (10)
: . - : : 0
0 ... 0 Ag Ay

Suppose that each subsystem is n; dimensional. Then it is easily
known from the above algorithm that rank(A;yy;) = n; < niy.
Now let k = min{l|n; < n;_y,! > 2}—1. From the definition, for all
j <k, Aj4y; is a nonsingular matrix. If all Aj415,7=1,...,¢-1
are nonsingular, the system is called uniformly decomposable. Let
us consider a dynamic compensator which is represented by,

2= Dz + Ev. (11)

u=Mz+ Nv (12)

where v is a new r dimensional input vector. Suppose that the
compensated system can be written as,

X =AX+Bv (13)
I
where X = [zT;27;]7 and
T T T
BM A BN

Next theorem can be easily proved by induction.

Theorem 1 Suppose (1) is controllable. There exists a r x ¢ —
n dimensional compensator (11),(12) such that the compensated
systern (13} is uniformly decomposable.
By this theorem, we can assume that the system is always uni-
formly decomposable. Based on this observation, we will assume
that

By=1, Agpuin=1, k=1,...,¢-1 (14)

in the following discussions.

Note 1 The Hessenberg form is not unique, however in practice,
there may be most natural form. For instance, it will be natural
to consider that a high frequency mode should be excited by lower
frequency modes in many mechanical systems.

3. Controller Design based on the Hessenberg Form
In this section, we will give an algorithm to assign the eigenvalues
and cigenvectors based on the Hessenberg form. Let k-th subsys-
tem can be written as,

Zk =Ak1'k+/il-1-'(k+‘)+uk (15)
where A), = Akk, /ig = [Akk+1,Akk+2,...,Ak'] and I(k) =
[ze,..., zq]T. We have assumed that under this coordinate, Ag4yx =

1. From equation (15), for any given matrix /{;, if the virtual input
uy satisfies,
up = (Hy — Ag)ze — ApzE+) (16)
we will get
2y = Hizg. (17)
This means that if the virtual input (16) is realizable, then the
cigenstructure assignment problem for this subsystem is trivial.
However, the virtual input u is constrained by ux = z;_;.
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Let
Arr Arin s Ay

I Aryien coo Argg !
amn=| o 1 Arssrqs oo Argz, | gy | 0

: . . . 0

: . . : : 0

0 0 I A ,
Then we can write as

2(6) = A(B) (%) + B(k)uk (18)

and (16) can be written as
Ug :F(k)z(k) F(k)=[H), —Ag-;—/ik].

Now consider the error vector zz_y = Zk.1 — ug. Diflerentiating
zp_1, we will get,

o1 = Arcrzios + Ak z® 4wy - FOABE 4 Mz, ),
(19)

This means that if the virtual input ux_; satisfies,
gy = FlE=1)(:-1) (20)
where

FO=D = [Hy g — Ay + Hy = A FOA® gy FO — A ]

(21}
we can get two subsystems connected as,
gy = Heoyzeoas (22)
= Hezp + 20 (23)
By repeating these processes from k = ¢, for any matrices, /iy, ..., H,,
we can find the feedback control,
u=Fz 49 (24)
which transform the system to the following form.
o= Heze + 2 k=1,2,...,q9 (25)

where zo = v(new input) and z, = z,. The system (25) can be

writ{cn in the matrix form as,

t=H:+ BWy (26)
where,
im0 o ... 0
I Hy 0 .. 0
H=12¢ 1 Hy ... 0
o 0 ... I I

From the equation (26), it will be clear that we can assign the
eigenvalues and the eigenvectors by choosing appropriate matrices
Hy,...,H,. )

Note 2 Note that the matrices Hy,..., Hy, may be complex ma-
trices hence these matrices should be chosen such that if Hy is
a complex matrix then for some 1, H; = H(complex conjugate
matrix) in order to guarantee the feedback control (24) to be real.
Now the controller design algorithm proposed here can be summa-
rized as follows..

Step 1 Select Hy, ..., Ay

Step 2 Set F = H,— A, , and calculate FU=1), . F(1) by (21).
Step 3 Let u = F(1)z and simulate the system behavior. 1f the
result is not satisfactory, modify If1,..., Hy and repeat Step 1 and
Step 2 for the system (26).



Example Let us consider the system

&= Ar + bu (27)
where,
210 1
A=11 3 1 b=10 (28)
01 4 0
This system is already decomposed to the Hessenberg form. Sup-
pose Hi = —=2,H3 = -3+ j,H3 = -3 — j. It is easy to show
that,

ugz = F3)z(3) = (~7—J)za
up = FMz2() = ~132, — 51z3
uy = FMz() = ~172y — 11725 — 31923

(29)

Since u; = u, we have derived the fecdback control which assigns
Hy, Hy, Hy. Note that the virtual input uz is the complex state
feedback, while the uy is real. This observation indicates that if
the complex H),..., Hy are given, we should deal with the com-
posite subsystem made up by the subsystem with H; and it’s com-
plex conjugate subsystem with fl,- to avoid the virtual input to be
complex!®). In such a case, the new subsystem may no longer be
full-controlled.

4. Observer Feedback Countrol
To design a controller by the above metliod, the state fcedback
is required, hence the effect of the use of the observer should be
considercd. A state obscrver for the system (1) and (2) can be
written as follows.

I=Apt+ Ky+ Bu (30)
whete
Ao =A+ NC. 31
Then the estimation error ¢ = I — z is given by
€= Apt. (32)

And it is well known that the observer feedback system can be

written as,
z A+ BF BF B
where the observer feedback,
u=Fz+v (34)

has been assumed. This means that the obscrver feedback system
is different from the pure state feedback (u = Fz + v) system only
in the existence of the disturbance € in the input channel. Hence it
will be needed to design the first subsystern S| carefully in order to
make the influence of ¢ small. Generally speaking, the eigenvalues
of Ag will be sclected “faster” than the closed loop eigenvalues,
eigenvalues of J/fy,..., H,. That is, the observer part will have
the widest bandwidth in the closed loop system. Hence, the influ-
ence of the observation error will excites the high frequency modes
unless the bandwidth of the first subsystem (eigenvalues of the
matrix H,) is selected properly.

5. Transfer Function Matrix of the Closed Loop System
In this section, we will consider the transfer function matrix of the
closed system,

;3 =Hz+ Blv (35)

y=Cz (36)
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Let

Ge(s) = C(sI - H)"'B®) (37)

be a transfer function matrix of the closed system (35), (36). From
the structure of 1l matrix, we know

(sI—Hl)"1

(sI— Hy)"Y(sI = IHy)~?

(sT - H)'BM = | (38)

ksz — H)"Y e (s] = Hy)

Hence the transfer function matrix G(s) is given by the linear com-
bination of the elements (sI — Hy)~!,...(sI — H,)~'. In the fre-
quency domain, each element (jwI—~ Hg)~! can be regarded to rep-
resent the characteristics of the closed loop system in the neighbor-
hood of frequencies determined by the eigenvalues of Hy (so called
corner frequencies). We have shown that we can assign H; inde-
pendently by using the above algorithm. In other words, our algo-
rithm gives the method of assigning frequency shapes near corner
frequencies independently to the closed system. Let us call the al-
gorithm the independent frequency shape control (IFSC) method.
The coefficient matrix € is determined by the coordinate transfor-
mation T which has transformed the system (10) into (35), and T

is determined uniquely by Hy,..., H,. Indeed, T can be written
as,
- By
o 1 -F® —F®
T=|0 0 1 -F® (39)
0 . . 0 I
and
C=cr'. (40)

Hear F,Ei) is the clement of the feedback vector defined by (21),
that is, FO = (FO, FE P9,
On the other hand, from (38), we know that the transfer function

matrix Ge(s) can be written as,

G(s) = Go(s)G(s) (41)
where,
(sI— Hy)---(sI—Hy)
R sl — Hg)---(sI - 1)
Go(s) = C ( ! (42)
1
Gi(s) = (sT = Hy) MsI = Hyor) ™ - (s] = i) ™! (43)
As is known from (42), Go(s) is the feedback invariant part of
G.(s), since the matrices Hy,..., H, are invariant with respect to
the state feedback,
v=F:+ Lw. (44)

It is easy to show that the transfer function matrix after the state
feedback (44) is written as,

Go(s) = Go(s)GF.L(s)- (45)

Let us write the i-th block of Go(s) as pi(s). Then Gr 1(s) is given
by the next theorem.
Theorem 2 Suppose det(L) # 0. Then,

. q
Gre(s)™' = L7 (s — H)pr(s) ~ 3 Fipi(s)).

i=1

(46)



If the closed loop system is again transforimed to the triangular
form as in (26), Gr,r should be written as,

Gro(s)=(sI = H) - (sT = f1y)~\.

Hence, Gp, 1 (s) is the transfer function matrix from the input to the
substate z, of the relative degree ¢. This means that the transfer
function matrix of the closed loop system is the product of the
feedback invariant part Go(s) and the transfer function matrix
Gp,L(s) from the input to the substate with the largest relative
degree g. IFSC method gives a simple way to design the Gg,r(s) by
assigning the frequency shape to each mode independently. Note
G, can also be designed by using the relationship,

GaY(s) = Grr™'(s) " (a7

where Gg4(s) is the desired polynomial matrix. Some design meth-
ods ,which design the denominator matrix of the transfer function
matrix directly, have been proposed [5]. However, it will not be
s0 easy to design the specific frequency shape by such approaches,
since the physical meanings of G4(s) are not always clear and it
will be determined by trial and error in general.

6. Conclusion

We have proposed a new controller design method (IFSC method)
based on the Hessenberg form of linear control systems. IFSC
method gives a simple way to assign the ecigenstructure to the
closed loop system. Further, we can use the information about
the frequency characteristics (information about the phase delay
for instance) through the design process. To analyze the robust-
ness properties will be a very important and interesting subject in
the future.
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