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Output Feedback Stabilization using Integral Sliding Mode Control

-
(Oh, Seungrohk)

Abstract - We consider a single-input-single-output nonlinear system which can be represented in a normal form.
The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is
used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral
sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can
asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

Key Words integral sliding mode control,
stabilization, output feedback control.

1. Introduction

Since the separation principle does not hold in the
nonlinear system which has a modeling uncertainty, a
high-gain observer has been used to reject disturbances
due to the imperfect feedback cancellation and modeling
uncertainty for a nonlinear system with relative degree
higher than one system in the output feedback control[1].
The use of high-gain observer to estimate state variable
results in the peaking phenomenon of the state variable.
A globally bounded control has been introduced to reduce
the peaking phenomenon[2]. Since the globally bounded
control was introduced, some works in the various control
schemes used the globally bounded control with high gain
observer. The works[3, 5] used the globally bounded
control in the continuous control scheme. A state
feedback controller was designed and analyzed first in the
continuos control scheme, and then a Lipschitz property
of the continuous controller was used to show that the
output feedback controller can recover the state feedback
properties. However an asymptotic stabilization was not
achieved due to the presence of a nonvanishing
perturbation caused by the estimation error and modeling
uncertainty, but an ultimate boundness was achieved. The
works[4,6] used the

stability in

to achieve the
control. The

integral control

asymptotic the continuous
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globally bounded control,

high-gain observer, asymptotically

works[7,8] control in the
discontinuous control scheme such as a sliding mode
control[7,8]. The

ultimate boundness in the presence of a nonvanising

used a globally bounded

works[7,8] also only achieved an
perturbation. In particular, an ultimate boundness was
achieved in the presence of input coefficient uncertainty.
Since the discontinuous controller does not have a
Lipschitz property, the design and analysis are different
with the continuous one. The work[9] used an integral
control with sliding mode control to achieve an
asymptotic stability in the presence of input coefficient
uncertainty, but limited to the state feedback. We start
with a nonlinear system which is a feedback linearizable
system. In particular, the relative degree of nonlinear
system is same as the dimension of state variables, since
we are interested in output feedback control. We
propose a new design scheme using an integral sliding
mode control can asymptotically stabilize the closed-loop
system with an high-gain observer in the presence of
input coefficient uncertainty. We show that

sliding mode control can reject disturbances due to the

integral
input coefficient uncertainty and estimation errors. The
performance of the propose control is demonstrated in the
example.

2. Problem statement

Consider the single-input single-output nonlinear system



w = Flw)+ Glw)u

y = hlw) (1)
where weR" is the state, u is the control input, y is the
measured output. Suppose that F, G, and h are
sufficiently smooth function on U, an open subset of R”
and F(0)=0, #(0)=0. Therefore the origin w=0 is an
equilibrium point of the open loop system. Since we are
interested in input—-output linearizable nonlinear system,
we assume the following assumption on the nonlinear

system (1).

Assumption 1 For all weU,
@® The system (1) has an uniform relative degree, i.e.,
Loh(w)=-=LeL 2 (w)=0 and LcL P "Ww)#0
@® The mapping x= T(w), defined by

x; =L '(w), 1€i<n and x=[x, x; ~,%] is a proper

map.

The uniform relative degree assumption is a necessary
and sufficient condition for the mapping x= T(w) to be a
local diffeomorphism in the neighborhood of every weU
which is an open subset of R”[10]. The properness of
the mapping x= T(w) ensures that it is a diffeomorphism
of U onto T(U). The change of variables x= T(w)

transforms the system (1) into the following normal form

¥ = Ax+ B[Rx)+ g(x)u]

y = Cx 2)

0 1 -
0 0 1

oo
—_o oo

0 -« = 0 1

0 o e e
C={10 - 0),.,.
where g(x)#0, Vxe T(U). Let f.(® and &(x) be a known
nominal model of Ax) and g(x), respectively. Suppose
that /(%) and &o(*) are sufficiently smooth, f.(0)=0, and
go(x)*0 for all xe T(U). Note that the mapping 7 could
depend on unknown parameter, however the dependence
of unknown parameter does not cause the problem, since
we are interested in output feedback control. We also
assume that the uncertainty of the equation (2) satisfies
the following assumption which i1s a typical matching

condition on the modeling uncertainty[11],

i
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Assumption 2 For all xe T(U), there is a scalar

Lipschitz function e(x) such that

K= £, < p(x)
lg(x)/gp(x)—1] < kg <1 (3

where #; is nonnegative constant.

Our goal is the design of output feedback controller to
stabilize the nonlinear system given by the equation (2)

over the domain T{U)= D.

3. Observer and sliding surface design

Since we are interested in an output feedback control, we
use the following high-gain observer to estimate the

state variable x,

- a; - N
= X, 1w*—E—}(y-— )., i=1,-,n—1

%, = :: (y— &)+ /(D +g(Du (4)

where % is the estimate of the state variables *; and e
is a positive constant to be specified The positive
constant @; are chosen such that the roots of the
following equation are in the open left half plane.
s"tais" 4 ta, sta,=0

We rewrite the observer equation (4) into the compact

form
=A%+ Bl fo( 3)+go( D2 + D()LC(x—~ %) (5)
where L=la, ,a,", and D(e) = diagl1/e 1/e2-1/e"]. We

choose the following sliding surface

S(x,0)=Mx+o (6)
where M=I[m,,~~,m, ,,1] and m, is chosen such that
. 0 0 1 0
A= :

_ _ is Hurwitz matrix
" M1 (1) o (n= 1) ’

o=—M(A%+ BK%) — MDE)LC(x—%) — &) where K s

chosen such that A+BK is a Hurwitz matrix, and

D =2 (oD + RIS DI+ R KHSGNE TPB) o
SGN( +) denotes the signum function and P is a positive
definite matrix such that P(A+BK)+(A+BK) "P=—1 1t
is described that an integral part is useful to reject
disturbance due to the input coefficient uncertainty for

state feedback, since o term 1s appeared in the
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equivalence control input during the sliding modef9]. We
use the idea suggested from [9] in the design of sliding
surface. However the sliding surface is different with [9],
since we are interested in output feedback. In fact, the
first term of sliding surface is‘ used for stabilization of
system in the sliding mode, the second term of sliding
surface 1s used to reject estimation error term and the
third term is used to reject the uncertainty of the input
coefficient. The reason for the choice of the sliding
surface will be more clear as the stability analysis of the
progressed later on. Let

closed-loop system is

e;=x,~ %, be the estimation error, and define the scaled
variables ¢,=(1/e" De; The closed-loop equations (2)
and (5) can be rewritten as

Ax+ Bl () + g(x)u] ,
(A= LOY+eBlAD — /o %) +elx) — g 1)} D

X

et

I

where ¢ is the same one used in the observer equation
(4). Note that
V(x) = x TPx. Define

(A—-LC) 1s a Hurwitz matnx. Let

2, = {xeR"| Wx)<v,JCD
Q, = {teRr" 1 <,/ e™ ™)
Q= 0x0,

where v, is a positive constant such that

1 2
l),) /I mxn(P) (2/‘ mx(P)(1+kg)51||P8”) , 61 and C; are

arbitrary positive numbers, and |-l denotes the
Euclidean norm. Note that Ama(°) and Am (‘) denote
the minimum eigenvalue and maxXimum- eigenvalue of the
arguments, respectively. The set 2 is taken as the region
of interest. We use a globally bounded control function as
a control input. We will specify the control input uz to
make a globally bounded control later on. The following
lemma states that the fast variables ¢ decays very
rapidly during a short time period with a globally
bounded control. The proof of the lemma is the same as

the proof of Lemma 1 in [7], hence it is omitted.

Lemma 1 Consider the closed-loop system (7) and
suppose that the control input u is globally bounded.
Then, for all (x(0),&0)eL,c

T,=T\(<T; such that for all 0<ele,, l<ke for all

, there exist €, and

e[ T,.T,) where *: is some positive constant, T3 is a
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finite time, and T Ty is the first time x(t) exits from

the compact set 0.
Proof: see [7]
4. Globally bounded controller design

We will design globally bounded control as we opposed it

in the previous section. Consider the function

(D) = (= /(D + Kt 7(3) =8 SGN(S)] (®)

We take a control input « as %, saturated outside set

— 1 _ - ~ ~
= P 3C)[ () + K%+ r(x)]’

2, In particular, let

_ J
“= go( %), §iT max veo) (0l and take the control

input
wu=ssal{ % ( %)/s;) + so5al Ty ( %)/5,) SGN(S) (@)

1 ,lﬁdzsf
x ,1d<s;. One can

where saf( -) is defined by s”t(x/s"):{

verify that (%) is a globally bounded control input.
Lemma 2 Consider the closed-loop system (7) with
control input u defined by (9). Then

@ the sliding mode condition SS<—&I9
is satisfied as long as Wdl<ke where 6 is some
positive constant.

@ 8I<ke for all =T,

Proof: The proof of this lemma has two parts. One part
is to prove that the sliding mode condition is satisfied
with the control input (9). The second part is to prove
that ¢ is O(e) for all t=T,. The first part can be proved
using the equation (9) and the fact that u«=7% for X€£2,
which is provided by !&I<kz Using the derivative of S
along the trajectories of the equation (7), the control
input « (9), and the fact that MB=1, it can be seen that

SS = S(Mx+ 0

S(MA%+ MB(£(%) + g( ®w) + MDELC(x—%)
— M(A%+ BK%) — MDE)LC(x—%) — r())

[



SlFp( + go( Du— Kx— #»(%)]

S[Fo(R) = fo( ) + Kx+ #(%) —8 ,SGMS)~ K%~ ()]
= S[—6&,SGMS)]

< ~8,SGM(S)

|

where <4, is some positive constant. Lemma 1 implies
that 1<k as long as the state variable x€2, for all
time. Therefore we will show that x*€£2, for all time.
Using %=x— D(e)¢, the derivative of Wx)==x7Px along
the trajectories of the equation (7) is given by

V(x) = x T Ax+ BKx—BK D(&)¢) + (Ax+ BKx—~BKD()0) 7

I

Prt2x TPBLAD— A ) + A3 — £ )

g(x)_go(’})
g%

) )__gi_L

go(® %)

+

(_fo(?() + K;C)

8 ,SGN(S)

+

(10)
where D(e)=diagle” ", "2, - 1) Using

%) = k =7 (o(3) + IS N+ &k JKH)SGN(X TPB)

%= x— D(e)¢, it can be verified that
Vix) = —Ildl 2=2x TPBK D(e)t+2x TPB(A2) —A %)
JLL g0 1
e 8 ,.SGM(8)) -2 e (1_k p)
3 TPBl(p( T) + kSl x)|+kglml)

glx) —g(%)

+ 2% "PBIAR — f( D+ =~
go( x)

(= fo( D)+ KD
+ 20 T PH AH) — f( D)

B =gl (o gy + D 43
go(x) o( %)

Vix) < —dl 2—2x TPBK D(e)t+2x TPB(Ax)~ A %)

+

— 805 SoNS) +2¢ THOPHAD — (D)

e
1 078D sy g+ ()
go(%) £4(%)

<~ ol *+ 2kl A1+ 2N PBICL+ £ )8+ 20,1181 2

S €9 2 _ZK_L
S o (m PRI IPEN Sy 00

(11)

for sufficiently small ¢ Note that 4 and * are
independent with e Therefore V(x)<0 for W(%)>¢, where

- 1 N 2 .
AT T (P (24 s (PR S IPBH) , Since v,>¢, x can

not leave the set £,

Lemma 2 implies that there is a finite time to reach the
sliding manifold S=0 and S=0 holds thereafter. We can
conclusion after performing the

reach the following
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Lyapunov analysis for the closed-loop system in the

sliding manifold.

Theorem 1 Consider the closed-loop system(7) with the
control input (9). Suppose that Assumption 1 and 2 are
satisfied. Then for all (x(0).{0)€2,, there is €0 such

that for all 0<é&le; such that I,i-f?e(x’ 9=0 gnd o is

bounded.

Proof: Since the sliding mode condition is satisfied, the

control input » can be replaced by[11}

o, D =— [ = £, (D) + K+ #(D))
(%)

in the sliding manifold which is the same as the control
input = defined in the equation (9) with & =0 Let
W, 0=x"Pc+t"PL where P is a positive definite
matrix such that PA-LO+(A-LC) "P=—1  The
derivative of Wx, &) along the trajectories of the equation
(7) is given by

W) = V0l =o— Sl 2428 TPBAD — £ D
+(a(x) — g (e,

Il

V(00— L 1812 +28 TPBLAD — A1)
+ A = 1o(R)

A Coht €]
£4(7%)
where V(s -¢ denotes V() with 8,=0 in the
equation (10). Using the inequality (11) with 6,=0. it
can be verified that

Wiz, ©) < —Ildl >+ 2k 1l gl + 2k i1 H] 2——};“;‘1! 242k ,lidl®
+2k,l¢lliAl

i

(—Fo () +K%+ »(M)]

i

= Il 2+ 2k 5 1l 6] + 2k gll €11 2~ —}; o ®

- L ks Iy

[llxﬂlléﬂ][k L Zk][ i)
5o

and k. Note that

1 kg

ks ?—Zk(,

for some positive constant ks ki ks

P,=

ky~k; are independent with & Let Py
is a positive definite matrix for sufficiently small e
Thus implies that Bm&0=0 gince % is bounded and

SS<~&|S. ¢ is bounded for all time.
5. Example

Consider the system

X = x
X, = Osinx; +(0.8+ 8))u
y = x
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6, and 6, are unknown constant that satisfy
16,)<0.4 and 104<0.2 and domain D={xeR®| |ldl<5}.
Suppose  that  initial belong to the set
2,={xeR*| II1<0.5}, A  high gain
constructed as

X = X+ (Ualy— %)

%, = (1/e)(y— %) +0.8x
Choose the sliding surface S(%,0) =M%+ with M={1 1},
K=[-2 =31, k=0.25 [f(X)=0 and o(X%)=0.5%l in the

where

states

observer is

). Let #(D) =g KT+ 7(2)~8,SGMS)

equation where

8,=0.1. Define the set © = {¥eR?| Wx)= % Px<i)

where P=[ —(1),5 _0055] One can verify that £,CQCD.
We take saturation level as s =11.5, s5=0.12 in the
equation (9). We simulate the closed loop system with
(=005 117, %(0)=[0-0.51"a(0)=0, and &=0.02.
Note that it is desirable that a small value-of ¢ is used
to reduce a chattering in practice. Fig. 1 shows that state
variables, () and (9, does not exhibit peaking
phenomenon, since a globally bounded controllers are
used. One can also observe that the estimate of state %
Fig. 1 and
Fig. 2 show that asymptotic stability is achieved in the
closed-loop system. Fig. 3 shows that the output of
integrator 1s bounded. Fig. 4 shows that

exhibits a peaking phenomenon in the Fig. 2.

the reaching
condition is satisfied as we expected. It is possible that

the use of a small value of ¢ takes a long reaching
time to the sliding surface. In this case, one can use the

S=Mx+o-M=x(t)~0o(t;) to reduce a

reaching time where !, is some time instant after %

sliding surface

returning the set 2.,{9]. Since the derivative of constant

equals to 0, the use of the term, —MZ%(t)—o(ty)), does

not have an effect in our analysis.

05}

Y

K L L 4
o 50 100 150

esfo
RE '

SR X1 I .

. “’-‘ -F L FEN 2
T 8 61 62 03 04

J‘.E:! 1WQEHHA._1¥ZA‘ o
Fig. 1 The plot of states variables
(solid line is x, and dashed line is x)
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Fig. 2 The plot of estimates of states variables
(solid line is %, and dashed line is %)

a8 4 S(&atoid H)Zrel vt
Fig. 4 The plot of value of S(sliding surface)

6. Conclusion

We have designed a globally bounded output feedback
integral sliding mode control. The integral sliding mode
control can asymptotically stabilize the closed loop system
in the presence of input coefficient uncertainty. The
peaking does not exhibit in the states variables, even
though a high-gain observer is used to estimate the state
variable. We demonstrate the performance of the integral

shiding mode controller via an example.
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