• Title/Summary/Keyword: Clock Synchronization

Search Result 229, Processing Time 0.031 seconds

Low Latency Synchronization Scheme Using Prediction and Avoidance of Synchronization Failure in Heterochronous Clock Domains

  • Song, Sung-Gun;Park, Seong-Mo;Lee, Jeong-Gun;Oh, Myeong-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.208-222
    • /
    • 2015
  • For the performance-efficient integration of IPs on an SoC utilizing heterochronous multi-clock domains, we propose a synchronization scheme that causes low latency overhead when data are crossing clock boundaries. The proposed synchronization scheme is composed of a clock predictor and a synchronizer. The clock predictor of a sender clock domain produces a predicted clock that is used in a receiver clock domain to detect possible synchronization failures in advance. When the possible synchronization failures are detected, a synchronizer at the receiver delays data-capture times to avoid the possible synchronization failures. From the simulation of the proposed scheme through SPICE modeling using a Chartered $0.18{\mu}m$ CMOS process, we verified the functionalities and timing behavior of the clock predictor and the synchronizer. The simulation results show that the clock predictor produces a predicted clock before a synchronization failure, and the synchronizer samples data correctly using the predicted clock.

An Implementation of Clock Synchronization in FPGA Based Distributed Embedded Systems Using CDR (CDR을 사용한 FPGA 기반 분산 임베디드 시스템의 클록 동기화 구현)

  • Song, Jae-Min;Jung, Yong-Bae;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Time synchronization between distributed embedded systems in the Real Time Locating System (RTLS) based on Time Difference of Arrival (TDOA) is one of the most important factors to consider in system design. Clock jitter error between each system causes many difficulties in maintaining such a time synchronization. In this paper, we implemented a system to synchronize clocks between FPGA based distributed embedded systems using the recovery clock of CDR (clock data recovery) used in high speed serial communication to solve the clock jitter error problem. It is experimentally confirmed that the cumulative time error that occurs when the synchronization is not performed through the synchronization logic using the CDR recovery clock can be completely eliminated.

Measurement Scheme for One-Way Delay Variation with Detection and Removal of Clock Skew

  • Aoki, Makoto;Oki, Eiji;Rojas-Cessa, Roberto
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.854-862
    • /
    • 2010
  • One-way delay variation (OWDV) has become increasingly of interest to researchers as a way to evaluate network state and service quality, especially for real-time and streaming services such as voice-over-Internet-protocol (VoIP) and video. Many schemes for OWDV measurement require clock synchronization through the global-positioning system (GPS) or network time protocol. In clock-synchronized approaches, the accuracy of OWDV measurement depends on the accuracy of the clock synchronization. GPS provides highly accurate clock synchronization. However, the deployment of GPS on legacy network equipment might be slow and costly. This paper proposes a method for measuring OWDV that dispenses with clock synchronization. The clock synchronization problem is mainly caused by clock skew. The proposed approach is based on the measurement of inter-packet delay and accumulated OWDV. This paper shows the performance of the proposed scheme via simulations and through experiments in a VoIP network. The presented simulation and measurement results indicate that clock skew can be efficiently measured and removed and that OWDV can be measured without requiring clock synchronization.

Development of Simulator for Performance Analysis of Synchronization Clock in the Synchronization Network and Transmission Network (동기망과 전송망에서의 동기클럭 성능 분석을 위한 시뮬레이터 개발)

  • Lee, Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.123-134
    • /
    • 2004
  • The synchronized clock performance in the synchronization network and SDH transmission network design is an important element in aspect of guaranteeing network stability and data transmission. Consequently the simulator which can applicable various parameters and several input levels from the best state to the worst state for performance analysis of the synchronized clock is required in case of network design. Therefore, in this paper, 1 developed the SNCA and TNCA for analysis of the synchronized clock in the synchronization network and transmission network. And utilizing these simulators with various wander generation, node number and clock state, 1 obtained the synchronized clock characteristics and maximum network nodes In NE1, NE2 and NE3 transmission network and DOTS1, DOTS2 synchronization network.

Design of Monitoring System for Pseudolite Clock Synchronization (의사위성 시각동기 모니터링 시스템 설계)

  • Hwang, Soyoung;Yu, Dong-Hui;Lee, Juhyun;Lee, Sangjeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.163-164
    • /
    • 2014
  • Pseudolite systems are used for backup systems of GPS satellite or indoor navigation systems. The pseudolite transmits GPS-like signal on the ground. Fundamentally, to estimate a position, clock synchronization among satellites is essential, because GPS receiver uses measurement based on TOA. Therefore, in order to improve the navigation performance in applications using pseudolite, clock synchronization with GPS satellites is required. This paper proposes design of monitoring system for pseudolite clock synchronization. The monitoring system analyzes clock synchronization accuracy of pseudolite and can be used for clock adjustment.

  • PDF

A Byzantine Fault-tolerant Clock Synchronization Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 비잔틴 오류를 허용하는 클럭 동기화 기법)

  • Lim, Hyung-Geun;Nam, Young-Jin;Baek, Jang-Woon;Ko, Seok-Young;Seo, Dae-Wha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.487-491
    • /
    • 2008
  • This paper proposes the Byzantine fault tolerant clock synchronization scheme for wireless sensor networks to cope with the clock synchronization disturbance attack of malicious nodes. In the proposed scheme, a node which is requiring clock synchronization receives 3m+1 clock synchronization messages not only from its parent nodes but also from its sibling nodes in order to tolerate malicious attacks even if up to m malicious nodes exist among them. The results show that the proposed scheme is 7 times more resilient to the clock synchronization disturbance attack of malicious nodes than existing schemes in terms of synchronization accuracy.

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

Performance Analysis of Synchronization Clock with Various Clock States Using Measured Clock Noises in NG-SDH Networks (NG-SDH망에서 측정된 클럭잡음을 이용한 다양한 클럭상태에 따른 동기클럭 성능분석)

  • Lee, Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.637-644
    • /
    • 2009
  • A study about performance analysis of synchronization clock using measured clock noises is required. Therefore this paper executed the study for performance analysis of synchronization clock and acquirement of maximum number of network node with various clock states using measured clock noises in NG-SDH networks. Also this paper generated a suitable clock model using measured clock noises, and carried out simulations with various clock states. Through the simulation results, maximum numbers were 80 or more network nodes in normal state, and were below 37 nodes in short-term phase transient(SPT) state, and were 50 or more in long-term phase transient(LPT) state. Accordingly this study showed that maximum numbers to meet ITU-T specification were below 37 network nodes in three clock states. Also this study showed that when SPT or LPT states occur from NE network before DOTS system, synchronization source must change with other stable synchronization source of normal state.

Clock Synchronization for Periodic Wakeup in Wireless Sensor Networks (무선 센서 망에서 주기적인 송수신 모듈 활성화를 위한 클락 동기)

  • Kim, Seung-Mok;Park, Tae-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.348-357
    • /
    • 2007
  • One of the major issues in recent researches on wireless sensor networks is to reduce energy consumption of sensor nodes operating with limited battery power, in order to lengthen their lifespan. Among the researches, we are interested in the schemes in which a sensor node periodically turns on and off its radio and requires information on the time when its neighbors will wake up (or turn on). Clock synchronization is essential for wakeup scheduling in such schemes. This paper proposes three methods based on the asynchronous averaging algorithm for clock synchronization in sensor nodes which periodically wake up: (1) a fast clock synchronization method during an initial network construction period, (2) a periodic clock synchronization method for saving energy consumption, and (3) a decision method for switching the operation mode of sensor nodes between the two clock synchronization methods. Through simulation, we analyze maximum clock difference and the number of messages required for clock synchronization.

  • PDF

Synchronization Control of Multiple Motors using CAN Clock Synchronization (CAN 시간동기를 이용한 복수 전동기 동기제어)

  • Khoa Do, Le Minh;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.624-628
    • /
    • 2008
  • This paper is concerned with multiple motor control using a distributed network control method. Speed and position of multiple motors are synchronized using clock synchronized distributed controllers. CAN (controller area network) is used and a new clock synchronization algorithm is proposed and implemented. To verify the proposed control algorithm, two disks which are attached on two motor shafts are controlled to rotate at the same speed and phase angle with the same time base using network clocks.